n вещей. Поняв, сколь стремительно нарастает такая функция, начинаешь осознавать, что создается весьма незавидная перспектива. Но если мы хорошо умеем создавать управляющие механизмы, то такая перспектива нас не очень пугает, поскольку это означает, что необходимо такое число рецепторов, сколько насчитывается событий или вещей. Эти n рецепторов создадут 2 n разнообразий на сенсориуме. Моторная система сведет 2n состояний к возможным конкретным действиям. Мы, таким образом, сохранили требуемое разнообразие. Однако вспомним приведенный ранее аргумент: если вещей или событий больше, чем рецепторов, которыеих распознают и сообщают о них системе управления, то мы не можем всеих определить. И здесь мы вновь сталкиваемся с законом о требуемом разнообразии. В любой данный момент нас будет касаться лишь то, о чем мы знаем, и не больше, а его разнообразие равно n . Разнообразие n создает 2n состояний, но наши процедуры выбора позволяют нам с этим справиться с помощью n процедур распознавания или n процедур выбора, т. е. именно с темих числом, которым мы располагали по определению. Но беда начинается, когда необходимо предпринимать какие-то действия.
Мы уже упоминали, что входные и выходные устройства симметричны и подчиняются закону о требуемом разнообразии. Это требование в равной мере распространяется как на входы, так и на выходы устройства. Реальная проблема управления, которую необходимо решать мозгу, сводится к проблеме сопоставления положения на входе с положением на выходе, с помощью анастомотик ретикулума. Если разнообразие возникающей перед нами ситуации равно n , то разнообразие на сенсориуме равно 2 n . А если по закону о требуемом разнообразии необходимое число действий составляет n , то разнообразие на моторной плате будет также 2 n . Каково же тогда разнообразие
Если до этого мы рассуждали спокойно, то теперь пришло время поднять настоящую тревогу. Дело в том, что числа такого вида немыслимо велики. Следует понимать, как это получается. Уже объяснялось, почему n разнообразий создают 2n состояний на сенсориуме. Объяснение достигалось по мере демонстрации того, как с целью поиска решения разнообразие разделялось пополам. Каждый доступный нам вариант выбора удваивает разнообразие. Начав с единственной возможности, мы позволяем создавать альтернативу: 0 или 1. При повторении этой процедуры 0 создает снова либо 0, либо 1, а единица — тоже 0 или 1 и т. д.
Рассмотрим черный ящик всего с двумя входными и двумя выходными величинами. На обеих его сторонах — сенсорной и моторной — при n=2 генерируется 2 n = 22=4 состояния: 00, 01, 10, 11. Сколько же будет соединений? Ответ таков — моторное разнообразие (4) увеличивает мощность сенсорного разнообразия (4) в 44 раза, а именно в 256 раз.
Как может показаться, в это трудно поверить, поскольку мы начали всего с двух двоичных входных и двух двоичных выходных величин. Но рассмотрим одно из четырех возможных выходных состояний, скажем 00. Оно может быть, а может и не быть зарегистрировано как одно из четырех выходных состояний. Обозначим одно из несостоявшихся соединений 0, а действующее 1. Следующая таблица демонстрирует возможные состояния системы:
16 различных состояний
В этой системе вполне различимы 16 состояний, хотя рассматривалось лишь одно выходное состояние. Однако мы располагаем
Почему же нам пришлось так подробно в этом разбираться и почему мы заговорили об этом с тревогой? Ответ состоит в том, что любая система управления генерирует столь большое разнообразие, используя этот механизм, что буквально нет никакой возможности его проанализировать и, следовательно, нет способа (как кажется). соединения анастомотик ретикулума. 'Буквально' здесь сказано точно — задача кажется научно неразрешимой, не говоря уже о ее бесконечно большой размерности. Если это так, то не следует и надеяться, что в один прекрасный день появятся достаточно мощные и быстродействующие компьютеры, позволяющие решать задачи, которые решить нельзя. Факты надо признавать, они таковы.
Рассмотрим наименьший 'мозг', которым стоило бы располагать, чтобы справиться с управлением сложной ситуацией в реальной жизни любой фирмы. Окружающая ее среда характеризуется числом разнообразия ее состояний, не так ли? Если представить себя или нашу фирму в окружающей среде с разнообразием, равным n = 300, то это, конечно, не так уж и много. Такая оценка весьма консервативна. На многих фирмах больше 300 работающих, более 300 станков, более 300 наименований выпускаемой продукции, более 300 клиентов. Для обстановки с разнообразием всего в 300 разнообразие на сенсорной и моторной платах составит 2300. Анастомотик ретикулум, необходимый для соединения этих плат должен обладать разнообразием (2n)2 n = (2300)2300 . Измеряя его в битах (поскольку это самая естественная мера для использования в случаях принятия решения), получаем 300х2300 бит, что примерно равно 3х1092 бит. Такова мера неопределенности в выбранной нами ситуации на фирме, которой не более 300 входных и 300 выходных величин, каждая из которых находится всего в двух состояниях.
Следующий довод, которому мы обязаны Бремерманну1, вытекает из физики. Как следует из квантовой механики, есть нижний предел точности, с которой может быть измерена энергия. Это означает наличие постоянной и предельной степени неопределенности материи. Согласно принципу Гейзенберга любая попытка улучшить точность измерения приводит к тому, что погоня за точностью изменяет состояние вещества. Количества здесь малы, но они сильно сказываются на свойствах вещества. Бремерманн приложил этот принцип к 1 г вещества в 1 с и показал, что нижний предел точности измерения материи определяет верхний предел ее информационных возможностей. Ниже этого предела нули будут приниматься за единицы и счет станет произвольным. В течение 1 с, пишет он, 1 г типичного вещества не сможет справиться более чем с 2х1047 битами информации. Конечно, никто не использовал грамм вещества для передачи столь огромного количества данных — микроминиатюризации еще далеко до этого. Как он утверждает, даже в конце технологического прогресса нельзя будет, используя 1 г вещества, передать более 2х1047 бит информации в 1 с, поскольку они начнут искажаться согласно принципу неопределенности Гейзенберга. Так Бремерманн приложил закон о требуемом разнообразии к самой материи.
Такое число выглядит огромным, и действительно мы приступаем к определению мощности растущего с огромной скоростью числа 2 n , где n представляет собой 10 с 47 нулями. Более того, мы можем построить компьютер массой более 1 г и использовать его дольше чем 1 с. Но даже люди, привыкшие иметь дело с экспоненциальными процессами, могут изумиться следующему доводу. Предположим, мы используем всю массу нашей планеты Земля для постройки компьютера и заставим его работать в течение всей ее истории. Каким разнообразием будет располагать такая фантастическая. машина? Что же, заявляет Бремерманн, в году, примерно, 3х107 с, возраст Земли примерно 109 лет. Ее масса около 6х1027 г. Тогда такой сделанный из всей Земли компьютер за всю историю нашей планеты обработает (2xl047)(3х107) (109)(6х1027) бит. А это составит около 1092 бит.
Теперь ясно, почему я выбрал разнообразие n = 300 для примера о мозге фирмы. За несколько абзацев до этого было показано, что ретикулярное разнообразие, которое может быть генерировано таким умом, при весьма консервативной оценке разнообразия такой фирмы составляет 3х1092 бит. Выяснилось также, что компьютер с массой нашей планеты за все время существования Земли при идеальном его состоянии и техническом совершенстве необходим для расчета состояний совсем небольшой фирмы.