именно таким образом — на основе теоретического анализа простейших систем. В нашем случае, когда речь идет о фундаментальных физических процессах, связанных с
А теперь давайте поговорим о матрице плотности более подробно. Для начала напомню одно из основных положений квантовой теории (см. главу 2, раздел 2.5): открытая система, взаимодействующая со своим окружением, не может быть описана вектором состояния, такой системе (это смешанное состояние) можно сопоставить лишь матрицу плотности.
Понимание этого фундаментального обстоятельства пришло не сразу. Несмотря на
Так, когда в 1935 году Эйнштейн сформулировал свой знаменитый
«Рассмотрим механическую систему, состоящую из двух отдельных систем
Элементарная ошибка содержится уже в самом начале этих рассуждений. Авторы ЭПР исходят из очевидного (на их взгляд) утверждения, что каждой подсистеме при заданном состоянии всей системы можно сопоставить волновую функцию. Но это утверждение в общем случае неверно. Такая возможность есть лишь при условии, что между
Уместно сказать, что Эйнштейн придумывал «парадоксы» на пустом месте, — никаких парадоксов нет, если не делать ошибок в рассуждениях и правильно подходить к анализу двух подсистем в единой общей системе. Если вся система замкнута, то ей, как целому, можно сопоставить вектор состояния, но каждой из подсистем не всегда удается сопоставить отдельный вектор. Состояния подсистем тогда описываются матрицами плотности, и она — своя у каждой из них. В этом случае невозможно однозначно восстановить матрицу плотности общей системы по матрицам отдельных подсистем, это допустимо лишь для сепарабельных состояний. Если же состояния несепарабельны, полное описание возможно лишь для всей системы целиком. И это не следствие неполноты квантовой механики, как пытался подать данное обстоятельство Эйнштейн. Наоборот, это результат более полного и глубокого описания окружающей реальности, естественное физическое следствие взаимодействия подсистем. При этом общую систему нельзя разделить на два полностью независимых локальных объекта — всегда будет существовать некоторая часть системы, которая принадлежит обоим объектам в равной степени. Подсистемы переплетены, запутаны между собой подобно сиамским близнецам и составляют единое целое, пусть даже в какой-то самой незначительной своей части.
Парадокс при этом снимается, но квантовая запутанность (несепарабельность) остается. Она является естественным следствием более полного квантового описания, в котором объект может быть единым целым или разделенным на отдельные части, но при этом учитываются даже самые незначительные квантовые корреляции между частями системы, которыми пренебрегает классическая физика.
Не исключено, что у кого-то сложится обманчивое впечатление, что, поскольку квантовые корреляции в нашем макроскопическом мире незначительны, ими можно полностью пренебречь. Классическая физика так и поступает. Но при этом не учитывается одно существенное обстоятельство — свойства этих корреляций столь необычны, удивительны и всеобъемлющи, что легко могут «перевесить» самые сильные классические корреляции. Пренебрегая квантовыми корреляциями, классическая физика в результате резко ограничивает свои возможности при описании физической реальности, сводя ее практически к бесконечно малой части всей
Но вернемся к матрице плотности. Именно это понятие позволило говорить о состоянии системы в полном смысле этого слова, поскольку появилась возможность учитывать не только внутренние, но и внешние условия, в которых она находится. Ранее, на основе вектора состояния (волновой функции), сделать это было нельзя, так как данные понятия были применимы только для замкнутых систем, которые не взаимодействовали со своим окружением. Применение волновых функций к
Несмотря на то, что матрица плотности в настоящее время является основным теоретическим инструментом в квантовой механике, ее роль и значение неспециалисты часто недооценивают и по