При работе с моделями замкнутых информационных систем необходимо четко понимать природу и происхождение шумов. Функции принятия решений, которые мы можем сформулировать, объясняют только главные факторы, влияющие на основные потоки. Многочисленные явления возникают за пределами изучаемой системы. Как отмечалось ранее в приложении
В данной книге мы решили начинать построение моделей с рассмотрения непрерывных, свободных от помех потоков информации, решений и действий. После того как изучена динамика системы при отсутствии помех, шумы могут быть введены дополнительно с тем, чтобы показать влияние случайных явлений на поведение системы. Такой порядок изучения отличается от подхода, принятого при рассмотрении стохастических моделей, в которых решения сформулированы так, чтобы создать последовательности отдельных событий, статистическая вероятность свершения которых может определяться состоянием системы. Автор считает, что, изучая вначале систему, свободную от помех, можно легче понять, каким образом основная структура системы определяет ее действия.
Когда мы будем готовы ввести составляющую шума в решения системы, мы должны четко представлять методологию того, как выполнить эту работу. Как следует определять шумы? Какие характеристики шумов интересуют нас? Сигнал шума несет мощность в широкой полосе частот.
Известно множество различных категорий шумов. В физических науках термин «белый шум» применяется для описания непрерывной функции, которая характеризуется равномерным распределением энергии по всему спектру частот от нуля до бесконечности, а плотность распределения вероятностей удовлетворяет Гауссову распределению. Белый шум является непрерывным сигналом, имеющим бесконечную мощность источника, и он может иметь мгновенные значения бесконечно большими; значение его в данный момент ничего не говорит о его значении в следующий момент времени даже через бесконечно малый интервал времени.

Говоря о постоянной спектральной плотности, как это имеет место в случае белого шума, мы подразумеваем, что мощность одинакова в любой полосе частот конечной ширины, независимо от того, где эта полоса расположена (см. рис. С-1). Например, в широкополосном электронном генераторе шумов была бы замерена одинаковая мощность после того, как мы пропустили шум через фильтр с полосой пропускания 1 тыс.

Белый шум характеризуется определенным распределением значений мощности в некотором диапазоне частот, но оно вовсе не обязательно будет описывать именно тот тип шума, который мы хотим включить в рассмотрение. Мы должны теперь увязать понятия белого шума и мощности шума с задачей использования шумов в моделях социальных систем.
В действительности генератор белого шума создать невозможно, ибо он должен обладать бесконечно большой мощностью и генерировать любые частоты. Однако можно осуществить достаточно близкое приближение к такому генератору, обеспечив генерирование белого шума в определенных диапазонах частот. Одной из точек зрения относительно сигнала шума является его представление в виде ряда дискретных случайных чисел. Эти числа могут быть распределены с равными промежутками времени. Исходя из этого, мы можем рассматривать непрерывный сигнал шума как кривую, соединяющую эти величины (рис. С-3). Форма кривой, изображенной на рис. С-3, является хорошим приближением к белому шуму вплоть до области частот, периоды которых вдвое больше интервала между дискретными импульсами шума. Другими словами, самая высокая частота, которую следует отразить в кривой, соединяющей серию случайных значений, равномерно распределенных во времени, составляет половину той частоты, с которой появляются сами случайные импульсы (данные).

Ряд равномерно распределенных случайных чисел можно легко использовать в качестве источника шума при работе с моделями социальных систем. Но будет ли этот источник отображать обусловленные принятием решений возмущения, которые мы хотим изучить? Здесь возникает та же проблема, что и при выборе других взаимосвязей в модели и ее параметров. Нас интересуют источники шумов, отражающие характер возмущений, которые, как мы считаем, существуют в действительной системе. Произвольный выбор ряда случайных чисел не дает уверенности в том, что данный метод удовлетворяет поставленной задаче. Каким должно быть среднее отклонение? Какой должна быть мощность шума в зависимости от распределения частот? Как часто следует производить выборочные замеры шумов. Насколько уязвимы наши суждения в отношении состава шумов?
К счастью, те выводы, которые мы собираемся получить на основе изучения моделей, не очень чувствительны к различным категориям используемых сигналов шума. Однако следует обратить внимание на некоторые общие положения и рекомендации.
Сигнал шума, представленный в виде ряда случайных чисел, как это изображено на рис. С-3, близок к полученному от источника белого шума при частотах, меньших частоты импульсов. Такой сигнал имеет одинаковую мощность шума при бесконечно малом приращении частоты, но не на октаву. Зрительно наиболее наглядной является форма кривой, описывающей величину мощности в расчете на октаву. Из рассмотрения рис. С-3 мы можем заметить, что мощность шума преобладает при частотах, равных половине частоты импульсов. Мы не видим или не ощущаем низкочастотных составляющих, так как они очень незначительны в единицах мощности на октаву.
Сигнал шума нельзя выбирать как произвольный ряд случайных чисел, поскольку эта процедура позволяет произвольно и полно определить всю спектральную плотность, а она может оказаться непригодной для наших целей. В качестве примера рассмотрим переменную, изменяющуюся по закону случайной функции, представляющую, например, фактор погоды в модели экономической системы или товарного рынка. Допустим далее, что оценку модели следует производить ежедневно. Мы могли бы затем выбирать ежедневно случайные числа, характеризующие количество выпавших осадков. Случайный характер этих данных мог бы потребоваться для воспроизведения суточных изменений возможных осадков. Но этого недостаточно. Случайные данные суточных выпадений осадков должны анализироваться с целью выявления недельных, месячных, годовых и более длительных изменений, поскольку выпадение осадков не является чисто случайным, время от времени происходящим явлением, а имеет определенные закономерности, если речь идет о достаточно продолжительных интервалах времени.
В главах 13–15 использовался простой метод управления мощностью шумов: шумы подавались в систему и поддерживались в течение более длительного интервала, чем интервал решения уравнений. В