главе 13 (уравнение 13–79) шумы подавались в модель и поддерживались в течение одной недели; а решение уравнений производилось для каждых 0,05 недели. Допустим, что мы попытались воспроизвести случайные недельные изменения продаж в диапазоне 2 к 1 (но не таких больших размеров, как в главе 13) путем добавления групп случайных чисел, взятых по 20 в группе. Изменения, происходящие из часа в час и изо дня в день, могли бы оказаться нереально большими, иногда даже вызывающими аннулирование числа заказов, превышающего располагаемое, с тем чтобы сделать долговременные изменения достаточно большими.
Когда мы говорим о характере сигнала помех, то особенно важен вопрос частотной избирательности системы. На рис. 15-5 показан сигнал случайной функции, который подается и поддерживается в течение 5 недель. В данном примере самое большое содержание мощности в величинах мощности на октаву приходится на диапазон самых высоких частот, отображенных на рисунке. Это диапазон, составляющий 10 недель, то есть частота равна около 5 периодам в год. Однако эта высокочастотная мощность почти полностью поглощается выравниванием и запаздыванием в системе. Система в целом реагирует на гораздо меньшую энергию шума, отображающего период в два года (или половину цикла за год). Это тот диапазон частот, в котором система обладает усилительными свойствами и амплитуды на выходе превышают амплитуды сигнала шумов на входе.
Следует отметить, что выравнивание подавляет высокие частоты источника шумов, но пропускает низкие частоты. Эти низкие частоты являются составляющими шума, которые авто-коррелируют на протяжении длительных периодов времени.
При оценке переменных, несущих шумы, мы должны проявлять осторожность и различать низкочастотные возмущения, возникающие вне системы (собственно шумы), от внутренне присущих ей частот. По-видимому, невозможно определить путем наблюдения, в какой мере низкочастотные случайные колебания привносятся внешним возмущением, а какая их часть обусловлена вводом, усиленным внутри системы. Мы обычно будем полагаться на наши знания деталей структуры системы при определении чувствительности модели к различным частотам и после этого найдем (как это было сделано в главе 12) такой сигнал помех, который даст амплитуды, наблюдаемые в рассматриваемой системе. Только в тех случаях, когда требуемые сигналы шума оказываются нереально большими, объективные знания природы шумов в реальной системе могут оказаться полезными при определении эффективности модели.
Использование шумов в динамических моделях требует глубокого и детального изучения. В данном приложении отмечены только некоторые важные положения.
Приложение D
ЗАПАЗДЫВАНИЯ
Ниже рассматриваются два связанных с запаздываниями вопроса, которые не были освещены ранее.
D. 1. Сопоставление информационного и «материального» запаздываний
Необходимо различать запаздывания в потоках информации и запаздывания в потоках конкретных физических величин. В предыдущих разделах уравнения запаздываний были использованы для определения запаздываний при транспортировке материалов и заказов. Выравнивающие уравнения использовались для отображения запаздываний в потоках информации. Как отмечалось в приложении
«Материальное» запаздывание не должно создавать или поглощать содержимое проходящего через него потока. Это означает, что в «материальном» запаздывании с постоянным темпом входящего потока исходящий поток будет изменяться при изменении постоянной времени запаздывания. Очевидно, что выход будет отличаться от входа в течение достаточно длительного времени, необходимого для создания внутреннего уровня в запаздывании, которое подвергается регулированию.
Следующие уравнения представляют экспоненциальное запаздывание первого порядка с переменной величиной запаздывания:
,
где
Уравнение
С другой стороны, значения величин в информационном потоке не должны изменяться только потому, что изменились запаздывания в передаче информации. Эти неустановившиеся независимые изменения в запаздываниях могут быть оценены с помощью следующего выравнивающего уравнения:
,
где
В установившихся условиях, когда темп входящего потока