воротничка обходилась в 2 цента, а стирка манжеты в 2 1/2цента, так что Чарли заплатил 39 центов.

204.В этой интересной задаче, где уборка зерна производится вдоль полосы, идущей по краю поля, до тех пор, пока не будет убрана половина урожая, я нашел, что фермеры прибегли к одному простому правилу: «Четверть разницы между путем напрямик через поле и окружным путем по дороге». Выражаясь языком математики, это значит: из суммы двух сторон вычтите диагональ поля и поделите разность на 4.

Поле имело в длину 2000, а в ширину – 1000 ярдов. С помощью рулетки эти честные фермеры нашли, что диагональ, проведенная из одного угла поля в противоположный, чуть превосходит 2236 ярдов. «Кружной путь по дороге» составил, разумеется, 3000 ярдов, так что разность оказалась чуть меньше 764 ярдов. Четверть этой величины отличалась на самую малость от 191 ярда (190,983), что и следовало принять за ширину полосы.

205. Дедушкины часы остановились точно в 9 ч 49 мин 5 1/11 с.

206. С помощью 6 стрел можно выбить 100 очков, послав их соответственно в 17, 17, 17, 17, 16, 16.

207.На помещенном ниже рисунке слева показано, как можно разрезать квадрат на 5 частей, из которых удается сложить 2 греческих креста одинаковых размеров. Одна из частей имеет форму креста, а из остальных четырех частей складывается второй крест. После того как эта головоломка стала хорошо известной, я нашел способ добиться того же результата, разрезав квадрат только на 4 части, как показано в центре рисунка. Из этих частей можно сложить 2 креста, изображенные справа.

Для того чтобы разрезать квадрат на 5 частей, из которых можно сложить 2 греческих креста различных размеров, разрежьте его, как показано на помещенном ниже рисунке слева. Часть А представляет собой меньший крест, а из четырех других частей можно сложить большой крест, как показано на рисунке справа.

На помещенном ниже рисунке показано, каким образом греческий крест можно разрезать на 5 частей, из которых удается сложить 2 креста одинаковых размеров. Одна часть совпадает с искомым крестом. Из оставшихся частей можно сложить второй крест.[36]

208. Существует простой способ решения этой задачи, где не приходится возиться с квадратными корнями. Сначала разделим 600 на 250 и прибавим 2, что дает 4,4. Разделив 600 на 4,4, мы получим расстояние от правого бегуна до моста слева, равное 136 4/11 ярда. Если мы сложим это значение с 250 (расстоянием от того же самого бегуна до моста справа), то получим 386 4/11 ярда, что и будет ответом к задаче.

[В этом способе, применимом к любому прямоугольному треугольнику, озадачивает прибавление двойки.

Предположим, что а – расстояние от правого бегуна до левого моста, b – расстояние от него же до правого моста, с – катет треугольника длиной в 600 ярдов и d – гипотенуза. По теореме Пифагора + b)2+ с2 = d2. Мы знаем также, что а + d = b + с, то есть d =b + с – д. Подставляя это в предыдущее равенство, мы найдем, что все квадраты сократятся и получится формула a = bc/(2b + c) = c/(c/b + 2) – M.Г.]

209. У каждой Музы вначале было 48 яблок, а у каждой Грации 144 цветка, по 36 штук каждого цвета. Каждая Муза дала каждой Грации по 4 яблока, а каждая Грация дала каждой Музе дюжину цветков (по 3 каждого цвета). После такого обмена у каждой девушки оказалось по 36 яблок и по 36 цветков (по 9 штук каждого цвета).

210. Мальчишка с цифрой 6 должен встать на голову с другой стороны так, чтобы получилось число 931.

211. Ответ вы видите на рисунке.

212. О'Шогнесси решил дать матери вдвое больше, чем дочери, а сыну вдвое больше, чем матери. Этим условиям легко удовлетворить, если передать дочери 1/7, матери – 2/7, а сыну – 4/7 всего состояния.

213. У фермера было 7 сыновей и 56 коров. Старший сын взял две коровы, а его жена взяла 6 коров. Следующий сын взял 3 коровы, а его жена – 5. Следующий сын взял 4 коровы и его жена – 4 и т. д., пока седьмой сын не взял 7 коров, ничего не оставив своей жене. Любопытно, что у каждой семьи оказалось теперь по 8 коров; поэтому каждая семья взяла по одной лошади, и в результате у всех оказалось скота на одинаковую сумму.

214. Сумма девяти цифр равна 45 и, следовательно, делится на 9. Вне зависимости от расположения в двух числах этих цифр и нуля сумма двух чисел также должна делиться на 9.

Более того, когда вы складываете цифры в любом числе, кратном 9, результат тоже всегда будет кратен 9. Поэтому, чтобы определить недостающую цифру, мы должны сложить сохранившиеся цифры ответа; при этом получается 10. Затем мы вычитаем это число из 18 (наименьшее число, кратное 9 и превосходящее 10) и получаем 8. Это и есть недостающая цифра.

215. Лошадь пробежала следующие друг за другом четверти мили соответственно за 27 l/4, 27, 27 1/8 с, а всю милю – за 1 мин 48 1/2 с.

216. Для того чтобы поместить слона в центр сиамского флага, разрежьте его на две части, как показано на рисунке, а затем переверните внутреннюю ромбовидную часть.

Наикратчайший путь на плане сада такой: 15, 16, 12, 11, 10, 14, 13, 9, 5, 1, 2, 6, 7, 8, 4, 3, «сердечко».

217. [Пусть х – число акров, а у – число бушелей, тогда можно составить следующие уравнения:

(3/4у + 80)/ x = 7,

(y + 80)/x = 8

Решая их, мы находим, что фермер отдавал ежегодно в уплату за аренду 80 бушелей, а на его ферме было 20 акров земли. – М. Г.]

218. [Если х – вес (в фунтах) индюков, купленных миссис О'Флаерти, равный по условию весу гусей, то можно составить уравнение

21x/24 + 21x/18 = 2x + 2

Отсюда х = 18. Следовательно, миссис О'Флаерти потратила 11,52 доллара на индюков и 8,64 доллара на гусей, то есть общая сумма затрат составила 20,16 доллара. – M Г.]

219. Костюм был продан за 13,75 доллара.

220. Джимми 10лет и 16/21 года.

221. [Сам С. Лойд не объясняет выигрышной стратегии этой игры. Стратегия фермера состоит в том, чтобы ходить в диагонально противоположные углы квадратов до тех пор, пока он не загонит индюка к краю доски, после чего он уже легко может выиграть. Если фермер ходит первым, он должен ходить на ячейку 35. Индюк не может добиться преимущества, поскольку место между ячейками 9 и 10 пусто. Следующая типичная игра прояснит стратегию:

– М. Г.]

Вторая головоломка решается в 24 хода следующим образом: 52, 14, 15, 8, 9, 16, 18, 10, 11, 42, 39, 31, 33, 25, 22, 45, 50, 4, 5, 64, 60, 2, 3, 7.

222. На рисунке видно, что ювелир украл из каждого горизонтального ряда по камню, а затем переставил нижний камень на самый верх.

223. [Практически это разновидность задачи 194. Приложив треугольник к квадрату, как показано на первом рисунке к решению задачи 194, данную задачу можно решить с пятью частями. Поскольку в данной задаче треугольник составляет меньшую часть квадрата, чем в задаче 194, другие два способа решения последней здесь неприложимы. – M. Г.]

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату