стремления обеспечить общность решения в радикалах уравнений 2–4 степени привели в Италии к введению в XVI веке мнимых чисел. Что же касается приоритета китайских математиков относительно правила
Практическую основу последней книги «Математики в девяти книгах» составляют задачи определения недоступных расстояний и высот с помощью теоремы Пифагора и свойств подобных треугольников. Математически эта книга особенно интересна общей, алгебраической формулировкой правил. Помимо элементарных способов применения теоремы Пифагора, в ней имеется способ нахождения пифагорейских троек, то есть целочисленных решений уравнения
Например, задача № 11 о размерах двери, относительно которой известны диагональ и разность между длиной и шириной, сводится к двум уравнениям. Выводов и доказательств, как уже было упомянуто, в рассматриваемом трактате нет.
Мы остановились так подробно на обзоре содержания «Математики в девяти книгах» потому, что это сочинение является самым значительным и даже, пожалуй, единственным крупным памятником древней китайской математики. И зная любовь китайцев к своим приоритетам, и стремление всё свое объявлять древним, полагаем, что он был создан позже прихода европейцев в Китай.
Сами же историки объявляют, что с XIV века в Китае начинается длительный период застоя в развитии наук. Добытые ранее знания не развиваются и даже забываются. Математика существует преимущественно за счет усвоения иностранных знаний. И лишь потом науками вновь занялись, и сразу вспомнили свои древние открытия. Как же это произошло?
В 1583 году в Китай пришел иезуит-миссионер М. Риччи, а затем сюда потянулись и другие. Видимо, не без их содействия в 1606 году в Китае впервые появились издания «Начал» Евклида, в 1650 году — таблицы логарифмов Влакка. Оригинальное же развитие китайской науки все еще было «прекратившимся». Спрашивается, а было ли оно раньше? Математики-специалисты китайского происхождения всегда готовились к научной деятельности за границей, да в большинстве случаев оттуда в Китай и не возвращались.
О математике Индии
В средневековой математике Индии преобладали вычислительно-алгоритмические методы и отсутствовали попытки построения дедуктивных систем. Геометрия индийцев — также практическая. И это не удивительно, так как в основном всё сюда приносилось из других мест, в том числе и наука — сначала вместе с религиозными эмигрантами из Византии, а потом с деятелями мусульманской экспансии. Соединение здесь различных потоков знания дало свои результаты, и весьма неплохие результаты.
Индийские математики ввели понятие нуля и широко использовали отрицательные числа, проводили исследования по комбинаторике (Ариабхатта, якобы V век). Они создали десятичную систему записи натуральных чисел и разработали правила операций над записанными так числами. Эту запись чисел стали применять математики многих восточных стран, откуда она попала в Европу. Индусы начали оперировать с иррациональными количествами так же, как с рациональными, без геометрического их представления, в отличие от византийских греков. У них были специальные обозначения для алгебраических действий, включая извлечение корня. Именно благодаря тому, что индусские и среднеазиатские ученые не смутились различием иррациональных и рациональных количеств, они смогли преодолеть «засилие» геометрии, и открыли путь развитию алгебры.
Но и в Индии есть мифический период в развитии математики. Согласно традиции, самыми ранними памятниками математической культуры индийцев являются религиозные книги: сутры и веды. Их происхождение относят к VIII–VII векам до н. э. В них приводились геометрические построения, составляющие важную часть ритуальных условий при постройке культовых сооружений: храмов, алтарей и прочего, а потому в них можно найти первые способы квадрирования кругов и применение теоремы Пифагора. Видимо, как следствие архитектурных требований решалась и арифметическая задача о нахождении пифагоровых троек натуральных чисел.
Числовая система с древних времен определилась как десятичная. Столь же рано определилась склонность к оперированию большими числами, нашедшая отражение в легендах. Будда, например, отличался феноменальным умением считать; он строил числовые десятичные системы до 10^54, давая наименования каждому разряду. Женихи прекрасной богини Земли, добиваясь ее руки, обязаны были соревноваться в письме, арифметике, борьбе и стрельбе из лука. Победитель соревнования Сарватасидда придумал, в частности, шкалу чисел, идущих в геометрической прогрессии со знаменателем 100, до числа с 421 нулем. Пристрастие к операциям с большими числами сохранялось в течение всей истории математики в Индии. Но мы не знаем, к какому реально периоду времени эти труды относятся.
Появление позиционного принципа в индийской математике относят к V веку.[22] Отныне числовое значение каждой цифры определялось ее местом влево от конца цифрового ряда. Передвижение цифры на одно место увеличивало ее числовое значение в 10 раз. В соответствии с десятичным принципом индийцы разработали знаки для 9 цифр и десятый знак, нуль. Знак нуля (
Арабы (раньше всего в Багдадском халифате) узнали о математических открытиях индийцев в VIII веке благодаря торговым и дипломатическим сношениям. Сразу же подхваченная арабами цифровая система стала известна в Западной Европе под названием арабской к XII веку, по-видимому, через арабские владения в Испании. Слово
Наиболее яркий период развития, оставивший самые значительные образцы математической литературы, это V–XII века. В это время трудились выдающиеся индийские ученые, математики и астрономы: Ариабхатта (считается, что он жил в конце V века), Брахмагупта (считается, что он родился в 598 году), Магавира (IX век), Бхаскара Акарья (родился в 1114 году) и другие.
Ариабхатта дал наиболее точное в то время определение числа «пи» — 3,1416, вычислил значение корней второй и третьей степени. Для понятия
Брахмагупта в стихотворной форме написал огромное сочинение в 20 книгах «Усовершенствованная наука Брамы». Он излагал основы арифметики и геометрии, алгебры и метрология; занимался действиями над целыми числами и дробями и извлечением корней. Он решал задачи на бассейны и смеси; посвятил место суммированию рядов, планиметрии, вычислению различных объемов, задачам неопределенного анализа и задачам комбинаторики.
Главной особенностью индийской математики является преобладание вычислительных приемов, преподносимых учащимся или читателям в догматической форме.
Представление о бесконечно больших числах ввел в математику Бхаскара. Он пояснял, что бесконечно большое — это тоже число, но не претерпевающее изменений, приращения или ущерба, какое бы большое число мы к нему ни прибавляли или от него ни отнимали; его, по выражению Бхаскары, можно уподобить вечному времени бесконечной цепи существовании.
Индийские математики ввели в расчеты и правильно трактовали понятие отрицательного числа. Это пример, как иной подход к проблеме позволяет получать другие результаты. Ведь византийцы работали с отрезками прямых, представить себе отрезок отрицательной длины невозможно. Да и нулевой отрезок имеет мало смысла.
Другое дело — индийская математика. Брахмагупта разъясняет, что числа могут трактоваться либо как имущество, либо как долг. Правила операций с числами тогда таковы: сумма двух имуществ есть имущество, двух долгов — долг, имущества и долга — их разность, которая либо долг, если он больше, либо имущество, если оно больше, либо нуль, если они равны. Сумма нуля и долга есть долг, имущества и нуля — имущество. Произведение двух имуществ или двух неимуществ есть имущество; результат произведения имущества на долг представляет убыток. То же правило справедливо и при делении. Квадрат имущества, или долга, есть имущество; имущество имеет два корня: один составляет прибыль, другой — долг. Корня убытка не существует, ибо таковой не может быть квадратом. Однако, вводя отрицательные числа, индийские математики не использовали их как равноправные элементы математики, считая их только чем-то вроде логических возможностей, потому что, по выражению Бхаскары, люди с ними не согласны.
Развитие методов решения задач неопределенного или диофантова анализа представляет одно из высших достижений индийской математики. Причина заинтересованности математиков Индии в решении подобных задач лежит, по-видимому, в необходимости изучения периодически повторяющихся явлений, обильные примеры чего дает астрономия. В самом деле, вопрос о периоде времени, состоящем одновременно из целого числа дней
Но характерная форма изложения, при которой не воспроизводится ни хода рассуждений, ни доказательства, не дает возможности судить о теоретико- числовых методах индийских математиков. Однако то немногое, что известно, показывает на наличие ряда теоретико-числовых методов.
Индийская геометрия тоже носит все черты практического подхода к делу. Есть чертежи, есть правила, но иногда правил нет, а под чертежом написано только: «смотри!». Некоторый интерес представляют тригонометрические таблицы, в которых хорды заменены полухордами. При этом вводятся в рассмотрение по существу тригонометрические функции: синусы, косинусы и синусы-верзусы (
Индийский математик Варахамихира заменил хорду (
В истории Индии имеется много фактов, свидетельствующих об экономических и политических связях с византийским и арабским миром и с Китаем. В математике считается бесспорным индийское происхождение десятичной системы счисления с нулем и правил счета. Можно проследить заимствование индусами от византийцев некоторых геометрических фактов и т. д.