для протонов. Грейзен, Зацепин и Кузьмин предсказали, что протоны с энергией больше, чем энергия, необходимая для того, чтобы сделать пионы таким способом, не будут достигать Земли. Энергия, при которой они предсказали, что будет происходить создание пиона, составляет около миллиардной доли энергии Планка (1019 ГэВ) и называется отсечкой GZK.
Это гигантская энергия, которая ближе к энергии Планка, чем любая другая энергия, которую мы знаем. Она более чем в 10 миллионов раз превышает энергию, которая будет достигнута на самых усложненных ускорителях частиц, планируемых в настоящее время.
Предсказание GZK обеспечивает строгий тест СТО Эйнштейна. Оно зондирует теорию на намного более высокой энергии и на скорости, более близкой к скорости света, чем это было сделано или даже возможно на Земле. В 1966, когда было сделано предсказание GZK, можно было наблюдать только космические лучи с энергиями намного ниже, чем предсказанная отсечка, но недавно были построены несколько инструментов, которые могут детектировать частицы космических лучей при или даже выше предсказанной отсечки. Один такой эксперимент, названный AGASA (по Akeno Giant Air Shower Array – Массив гигантских атмосферных ливней Акено), осуществленный в Японии, сообщает, по меньшей мере, о дюжине таких экстремальных событий. Энергия, заключавшаяся в этих событиях, превышает 3 х 1020 электрон-вольт – грубо это равно энергии, которую подающий вкладывает в быстрый мяч в бейсболе, но вся она переносится одним протоном.
Эти события могут быть сигналом, что СТО нарушается при экстремальных энергиях. Сидни Колеман и Шелдон Глэшоу предположили в конце 1990х, что нарушение СТО могло бы повысить энергию, необходимую для создания пиона, таким образом, повышая энергию отсечки GZK и позволяя протонам более высоких энергий достигать детекторов на Земле.[11]
Это не единственное возможное объяснение наблюдению таких высоко-энергичных протонов из космических лучей. Возможно, что они сами происходят близко от Земли, так что у них нет времени, чтобы быть замедленными через взаимодействие с космическим микроволновым фоном. Это можно было бы проверить, увидев, что протоны, о которых идет речь, прибывают из любого привилегированного места в небе. До сегодняшнего дня нет таких свидетельств, но возможность остается.
Есть также возможность, что эти экстремальные высоко-энергичные частицы совсем не являются протонами. Они могли бы быть пока не известными видами стабильных частиц, с массой, намного большей, чем у протона. Если это так, это тоже было бы крупное открытие.
Конечно, всегда возможно, что ошибочен эксперимент. Команда AGASA сообщает, что их измерения энергии точны с неопределенностью в 25 процентов, что является большим процентом ошибки, но все еще не достаточным, чтобы объяснить существование высоко-энергичных событий, которые они видят. Однако, их оценка степени точности их эксперимента тоже могла быть ошибочной.
К счастью, проводимый в настоящее время эксперимент разрешит рассогласования. Это Детектор космических лучей Аугера, уже запущенный в работу в пампасах западной Аргентины. Если детекторы Аугера подтвердят японские наблюдения, и если другие возможные объяснения могут быть опущены, это было бы самым важным открытием последних ста лет – первое нарушение основных теорий, содержащих в себе научную революцию двадцатого столетия.
Что означает наблюдать частицы космических лучей с такой экстремальной энергией? Когда частица такой энергии ударяется о верхние слои атмосферы, она производит ливень других частиц, которые проливаются вниз на площадь во много квадратных километров. Эксперимент Аугера состоит из сотен детекторов, занимающих более 3000 квадратных километров аргентинских пампасов. Также на этой площади несколько световых сенсоров высокого разрешения сканируют небо, чтобы захватить свет, произведенный ливнем частиц. Объединяя сигналы, полученные от всех этих детекторов, исследователи Аугера могут определить энергию исходной частицы, которая врезалась в атмосферу, точно так же, как направление, с которого она прибыла.
Как об этом пишут, обсерватория Аугера только выпустила свои первые данные. Хорошая новость, что эксперимент работает хорошо, но все еще не вполне достаточно данных, чтобы решить, имеется ли отсечка, предсказанная на основе СТО, или нет. Все еще разумно надеяться, что по истечении нескольких лет будет достаточно данных, чтобы решить проблему.
Даже если команда Аугера объявит, что СТО остается жизнеспособной, одна эта находка будет самой важной в фундаментальной физике за последние двадцать пять лет – это значит, со времен неудачи поиска распада протона (см. главу 4). Долгая темная эра, во время которой теория развивалась без руководства со стороны эксперимента, наконец, закончится. Но если Аугер откроет, что СТО не полностью верна, это возвестит приход новой эры в фундаментальной физике. Стоит уделить некоторое время, чтобы рассмотреть последствия такой революционной находки и куда она может привести.
14
Равняясь на Эйнштейна
Предположим, что проект Аугера или некоторый другой эксперимент покажет, что СТО Эйнштейна нарушается. Это будет плохой новостью для теории струн: Это означало бы, что первое великое экспериментальное открытие двадцать первого века было полностью неожиданным для самой популярной 'теории всего'. Теория струн предполагает, что СТО верна точно в том виде, как она была записана Эйнштейном сто лет назад. На самом деле важным достижением теории струн было сделать теорию струн согласующейся как с квантовой теорией, так и с СТО. Так что теория струн предсказывает, что независимо от того, как далеко находятся их источники друг от друга, фотоны с разными частотами путешествуют с одной и той же скоростью. Как мы видели, теория струн не делает много предсказаний, но это одно из них; фактически, это единственное предсказание теории струн, которое может быть проверено с помощью существующей технологии.
Что означало бы для предсказаний СТО быть фальсифицированными? Имеются две возможности. Одна в том, что СТО не верна, но другая возможность приводит к углублению СТО. На этом разграничении основывается история, возможно, самой удивительной новой идеи, появившейся в фундаментальной физике в последнее десятилетие.
Имеются несколько экспериментов, которые могли бы обнаружить нарушение или модификацию СТО. Эксперимент Аугера мог бы сделать это, но также это могли бы сделать наши наблюдения гамма-вспышек. Это гигантские взрывы, которые за несколько секунд могут произвести столько света, сколько излучает целая галактика. Как подразумевает название, большая часть этого света излучается в виде гамма-лучей, которые являются очень энергичной формой фотонов. Сигналы от этих взрывов достигают Земли в среднем около раза в день. Впервые они были обнаружены в конце 1960х военными спутниками, построенными для поиска нелегальных испытаний ядерного оружия. Сегодня они наблюдаются научными спутниками, чья цель и заключается в их обнаружении.
Мы не знаем точно, что является источником гамма-вспышек, хотя имеются правдоподобные теории. Они могут возникать от столкновения двух нейтронных звезд или нейтронной звезды и черной дыры. Каждая пара могла бы вращаться друг вокруг друга миллиарды лет, но такие системы нестабильны. Поскольку они излучают энергию в виде гравитационных волн, они очень медленно сближаются в направлении друг друга по спирали, пока, наконец, не столкнутся, породив самое неистовое и энергичное из известных событий.
СТО Эйнштейна говорит нам, что весь свет путешествует с одинаковой скоростью независимо от его частоты. Гамма-вспышки обеспечивают лабораторию для проверки этого утверждения, поскольку они дают очень короткую вспышку фотонов в широком диапазоне энергий. Самое важное, им могут потребоваться миллиарды лет, чтобы достичь нас, и в этом заключается сердцевина эксперимента.
Предположим, что Эйнштейн ошибся и фотоны с различными энергиями путешествуют со слегка различными скоростями. Если два фотона, созданные в одном и том же удаленном взрыве, достигли Земли за разные времена, это, несомненно, будет указывать на нарушение СТО.
Что могло бы подразумевать такое важное открытие? Это могло бы, в первую очередь, зависеть от физического масштаба, на котором происходит нарушение. Одна ситуация, когда мы ожидаем, что разрушение СТО происходит на планковской длине. Вспомним из предыдущих глав, что длина Планка составляет около 10–20 от размера протона. Квантовая теория говорит нам, что этот масштаб представляет порог, ниже которого классическая картина пространства-времени распадается. Эйнштейновская СТО является частью классической картины, так что мы можем ожидать, что она нарушится точно в этой точке.
Могут ли какие-нибудь эксперименты увидеть эффект нарушения структуры пространства и времени на планковском масштабе? С помощью современной электроники могут быть обнаружены очень мелкие разницы во временах прибытия фотонов, но достаточно ли современная электроника хороша, чтобы измерить даже еще более ничтожные эффекты квантовой гравитации? За десятилетия мы, теоретики, приучились, что планковская длина столь мала, что ни один осуществимый сегодня эксперимент не смог бы ее обнаружить. Точно так же большинство профессоров физики сотню лет назад были уверены, что атомы слишком малы, чтобы увидеть их, мы повторяли эту ложь в бесчисленных статьях и лекциях. Но это ложь.
Поразительно, это говорилось, пока в середине 1990х для нас не стало ясно, что мы на самом деле могли бы прозондировать масштаб Планка. Как временами происходит, несколько людей осознали это, но в итоге были отвергнуты, когда они попытались опубликовать свои идеи. Одним был испанский физик Луис Гонсалес-Местрес из Центра национальных научных исследований в Париже. Открытие, подобное этому, может быть сделано несколько раз независимо, пока кто-то не привлечет внимания сообщества специалистов, в известном смысле, навязав его. В данном случае это был Джованни Амелино- Камелиа из Университета Рима. Сейчас, разменяв свой пятый десяток лет, Амелино-Камелиа энергичен, сфокусирован и влюблен в физику, со всем шармом и огнем, ассоциирующимися с южной Италией. Квантово-гравитационное сообщество счастливо считать его своим членом.
Когда Амелино-Камелиа был постдоком в Оксфорде, он установил себе задачу поиска способа наблюдения физики на планковском масштабе. В то время это казалось совершенно сумасшедшей целью, но он вызвался доказать, что общепринятое знание неверно и можно достичь нкоторого способа сделать это. Он был вдохновлен проверками распада протона. Распад протона (см. главу 4) был предсказан как экстремально редкое событие, но если вы соберете достаточно протонов вместе, вы могли бы ожидать увидеть его. Гигантское число протонов выполнило бы функцию усилителя, сделав видимым нечто экстремально малое и редкое. Вопрос, которым задался Амелино-Камелиа, был в том, а не мог бы какой-то такой усилитель помочь обнаружить явления на планковском масштабе.
Мы уже отмечали два примера успешного усиления: космические лучи и фотоны от гамма-вспышек. В обоих случаях мы использовали саму вселенную как усилитель. Ее огромные размеры очень сильно усиливают вероятность экстремально редких событий, а гигантское количество времени, которое нужно свету, чтобы пропутешествовать через нее, может усилить мельчайшие эффекты. На то, что эти виды экспериментов могли бы теоретически сигнализировать о нарушении СТО, внимание обращалось и ранее. Амелино-Камелиа открыл именно то, что мы могли бы на самом деле разработать эксперименты для зондирования планковского масштаба, а поэтому квантовой гравитации.
Типичное изменение в скорости фотона из-за квантовой гравитации должно было бы быть неправдоподобно малым, но эффект чрезвычайно