1. 3.
Пусть общее число карт в колоде К равно n и из них m различных. Разобъем колоду К на отрезки
К = (К1, К2,…, КN),
где через N обозначено общее количество отрезков разбиения. Пусть каждый из этих отрезков содержит p карт. Разбиение выберем так, чтобы число карт в отрезке разбиения было существенно меньше общего числа карт в колоде К:
p « е
1. 4. Разнесение пары карт как случайная величина
Рассмотрим конечную вероятностную схему равновероятного выбора с возвращением двух карт из колоды К. Это значит, что происходит случайный равновероятный выбор карты в колоде К, эта карта запоминается и возвращается в колоду.
Затем также равновероятно выбирается вторая карта. Результатом выбора является (случайный) протокол, в котором записаны порядковые номера в колоде обеих выбранных карт k1, k2 в порядке их выбора.
Определим случайную величину з, которую мы назовем
з = i1 – i2.
Таким образом,
1. 5. Локальное искажение летописи – колоды карт
Пусть А – некоторое событие, определяемое заданной структурой колоды К (то есть порядком карт в ней и ее разбиением на отрезки) и выбранной парой карт. Событие А назовем
Математический пример.
Событие А0, состоящее в том, что в некотором отрезке разбиения содержатся карты сразу обоих выбранных видов является
Если же говорить об исторических хрониках,
Скажем, в примере с событием А0 хронист, включивший в какое-то место хроники имена двух персонажей, сделал это на основании своих вполне осознанных представлений о том, что они жили одновременно (или имели сходную судьбу и т. п.) и ему для этого не надо было перекраивать заново весь текст хроники.
В отличие от этого,
1. 6. Локальная связь карт в «правильной колоде» не влияет на глобальное распределение таких же карт
В основе предлагаемой методики лежит следующее интуитивно очевидное утверждение о статистических свойствах
Гипотеза
Если колода К не содержала дубликатов или же ее тасование было достаточно полным и структура дубликатов (коротких идентичных друг другу колод) в ней полностью разрушена, то
В самом деле, распределение з является
Это значит, что в случае
Иначе говоря, из гипотезы Н0 вытекает такое следствие:
Пусть А – некоторое локальное событие, а е – радиус затухания зависимости между отдельными отрезками разбиения колоды К. (В качестве единицы измерения этого радиуса возьмем длину отрезка разбиения. Таким образом е – целое число.) Тогда распределение Pз = x|A, з» е должно совпадать с распределением
Pз = x|з» е.
С другой стороны, в случае, когда гипотеза Н0 неверна и колода К содержит дубликаты, указанные распределения могут очень сильно разниться на всем интервале возможных значений случайной величины з (0 « з « N-1).
Математический пример.
Возьмем событие А0, определенное выше и предположим, что колода К содержит дубликаты. Тогда для некоторых отрезков разбиения Кi, такие же как и в Кi карты будут содержаться также в дубликатах даного отрезка. Таким образом, пары карт, тождественных с некоторыми картами из Кi, будут распределены по колоде К не совсем произвольно. А именно, они будут «собираться»