The number of comparisons is logarithmic: at most log(last – first) + 2 . If ForwardIterator is a Random Access Iterator then the number of steps through the range is also logarithmic; otherwise, the number of steps is proportional to last – first. [3]

Example

int main() {

int A[] = { 1, 2, 3, 3, 3, 5, 8 };

 const int N = sizeof(A) / sizeof(int);

 for (int i = 1; i <= 10; ++i) {

  cout << 'Searching for ' << i << ': ' << (binary_search(A, A + N, i) ? 'present' : 'not present') << endl;

 }

}

The output is:

Searching for 1: present

Searching for 2: present

Searching for 3: present

Searching for 4: not present

Searching for 5: present

Searching for 6: not present

Searching for 7: not present

Searching for 8: present

Searching for 9: not present

Searching for 10: not present

Notes

[1] Note that you may use an ordering that is a strict weak ordering but not a total ordering; that is, there might be values x and y such that x < y, x > y, and x == y are all false. (See the LessThan Comparable requirements for a more complete discussion.) Finding value in the range [first, last), then, doesn't mean finding an element that is equal to value but rather one that is equivalent to value: one that is neither greater than nor less than value. If you're using a total ordering, however (if you're using strcmp, for example, or if you're using ordinary arithmetic comparison on integers), then you can ignore this technical distinction: for a total ordering, equality and equivalence are the same.

[2] Note that this is not necessarily the information you are interested in! Usually, if you're testing whether an element is present in a range, you'd like to know where it is (if it's present), or where it should be inserted (if it's not present). The functions lower_bound, upper_bound, and equal_range provide this information.

[3] This difference between Random Access Iterators and Forward Iterators is simply because advance is constant time for Random Access Iterators and linear time for Forward Iterators.

See also

lower_bound, upper_bound, equal_range

merge

Category: algorithms

Component type: function

Prototype

Merge is an overloaded name: there are actually two merge functions.

template <class InputIterator1, class InputIterator2, class OutputIterator>

OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result);

template <class InputIterator1, class InputIterator2, class OutputIterator, class StrictWeakOrdering>

OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, StrictWeakOrdering comp);

Description

Merge combines two sorted ranges [first1, last1) and [first2, last2) into a single sorted range. That is, it copies elements from [first1, last1) and [first2, last2) into [result, result + (last1 – first1) + (last2 – first2)) such that the resulting range is in ascending order. Merge is stable, meaning both that the relative order of elements within each input range is preserved, and that for equivalent [1] elements in both input ranges the element from the first range precedes the element from the second. The return value is result + (last1 – first1) + (last2 – first2).

The two versions of merge differ in how elements are compared. The first version uses operator<. That is, the input ranges and the output range satisfy the condition that for every pair of iterators i and j such that i precedes j, *j < *i is false. The second version uses the function object comp. That is, the input ranges and the output range satisfy the condition that for every pair of iterators i and j such that i precedes j, comp(*j, *i) is false.

Definition

Defined in the standard header algorithm, and in the nonstandard backward-compatibility header algo.h.

Requirements on types

For the first version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• InputIterator1's value type is the same type as InputIterator2's value type.

• InputIterator1's value type is a model of LessThan Comparable.

• The ordering on objects of InputIterator1's value type is a strict weak ordering, as defined in the LessThan Comparable requirements.

• InputIterator1's value type is convertible to a type in OutputIterator's set of value types.

For the second version:

• InputIterator1 is a model of Input Iterator.

• InputIterator2 is a model of Input Iterator.

• InputIterator1's value type is the same type as InputIterator2's value type.

• StrictWeakOrdering is a model of Strict Weak Ordering.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату