The number of comparisons is logarithmic: at most log(last – first) + 2 . If ForwardIterator is a Random Access Iterator then the number of steps through the range is also logarithmic; otherwise, the number of steps is proportional to last – first. [3]
Example int main() {
int A[] = { 1, 2, 3, 3, 3, 5, 8 };
const int N = sizeof(A) / sizeof(int);
for (int i = 1; i <= 10; ++i) {
cout << 'Searching for ' << i << ': ' << (binary_search(A, A + N, i) ? 'present' : 'not present') << endl;
}
}
The output is:
Searching for 1: present
Searching for 2: present
Searching for 3: present
Searching for 4: not present
Searching for 5: present
Searching for 6: not present
Searching for 7: not present
Searching for 8: present
Searching for 9: not present
Searching for 10: not present
Notes [1] Note that you may use an ordering that is a strict weak ordering but not a total ordering; that is, there might be values x and y such that x < y, x > y, and x == y are all false. (See the LessThan Comparable requirements for a more complete discussion.) Finding value in the range [first, last), then, doesn't mean finding an element that is equal to value but rather one that is equivalent to value: one that is neither greater than nor less than value. If you're using a total ordering, however (if you're using strcmp, for example, or if you're using ordinary arithmetic comparison on integers), then you can ignore this technical distinction: for a total ordering, equality and equivalence are the same.
[2] Note that this is not necessarily the information you are interested in! Usually, if you're testing whether an element is present in a range, you'd like to know where it is (if it's present), or where it should be inserted (if it's not present). The functions lower_bound, upper_bound, and equal_range provide this information.
[3] This difference between Random Access Iterators and Forward Iterators is simply because advance is constant time for Random Access Iterators and linear time for Forward Iterators.
See also lower_bound, upper_bound, equal_range
Category: algorithms
Component type: function
Prototype Merge is an overloaded name: there are actually two merge functions.
template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result);
template <class InputIterator1, class InputIterator2, class OutputIterator, class StrictWeakOrdering>
OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, StrictWeakOrdering comp);
Description Merge combines two sorted ranges [first1, last1) and [first2, last2) into a single sorted range. That is, it copies elements from [first1, last1) and [first2, last2) into [result, result + (last1 – first1) + (last2 – first2)) such that the resulting range is in ascending order. Merge is stable, meaning both that the relative order of elements within each input range is preserved, and that for equivalent [1] elements in both input ranges the element from the first range precedes the element from the second. The return value is result + (last1 – first1) + (last2 – first2).
The two versions of merge differ in how elements are compared. The first version uses operator<. That is, the input ranges and the output range satisfy the condition that for every pair of iterators i and j such that i precedes j, *j < *i is false. The second version uses the function object comp. That is, the input ranges and the output range satisfy the condition that for every pair of iterators i and j such that i precedes j, comp(*j, *i) is false.
Definition Defined in the standard header algorithm, and in the nonstandard backward-compatibility header algo.h.
Requirements on types For the first version:
• InputIterator1 is a model of Input Iterator.
• InputIterator2 is a model of Input Iterator.
• InputIterator1's value type is the same type as InputIterator2's value type.
• InputIterator1's value type is a model of LessThan Comparable.
• The ordering on objects of InputIterator1's value type is a strict weak ordering, as defined in the LessThan Comparable requirements.
• InputIterator1's value type is convertible to a type in OutputIterator's set of value types.
For the second version:
• InputIterator1 is a model of Input Iterator.
• InputIterator2 is a model of Input Iterator.
• InputIterator1's value type is the same type as InputIterator2's value type.
• StrictWeakOrdering is a model of Strict Weak Ordering.