числовой машины, однако я привел здесь это решение по двум причинам. Во-первых, именно так решал во времени эту задачу сам Крейг, а во-вторых, я подумал, что читателю будет интересно увидеть, как две математические задачи могут иметь разное содержание, но одну и ту же абстрактную форму.
Для того чтобы непосредственно убедиться в том, что комбинация RVLVQRVLVQ является родственной по отношению к самой себе (а значит, и открывает замок), будем рассуждать следующим образом. Комбинация QRVLVQ родственна по отношению к комбинации RVLV (согласно свойству Q), поэтому комбинация VQRVLVQ будет родственной по отношению к обращению комбинации RVLV (согласно свойству V), то есть к комбинации VLVR. Значит, комбинация LVQRVLVQ родственна по отношению к комбинации QVLVR (согласно свойству L), и, следовательно, комбинация VLVQRVLVQ оказывается родственной по отношению к обращению комбинации QVLVR, то есть комбинации RVLVQ. Тогда (согласно свойству R) комбинация RVLVQRVLVQ будет родственной по отношению к повторению комбинации RVLVQ, то есть к комбинации RVLVQRVLVQ. Итак, комбинация RVLVQRVLVQ действительно является родственной самой себе.
Часть четвертая. Разрешима или неразрешима наша задача?
Логическая машина Фергюссона
Через несколько месяцев после того, как была с блеском разрешена загадка банковского сейфа в Монте-Карло, Крейг и Мак-Каллох наконец-то навестили Фергюссона — их очень заинтересовала его логическая машина. Разговор скоро зашел о сущности доказуемости.
— Я расскажу вам интересную и весьма поучительную историю, — сказал Фергюссон. — На экзамене по геометрии одного студента попросили доказать теорему Пифагора. Он сдал свою работу преподавателю, но тот возвратил ее с пометкой: «Это не доказательство!» Молодой человек пошел к преподавателю и сказал: «Сэр, как вы можете утверждать, будто то, что я вам сдал, — не доказательство? За весь курс лекций вы ни разу не дали нам определения доказательства. Вы давали нам строгие определения таких геометрических понятий, как треугольник, квадрат, окружность, параллельность, перпендикулярность и т. д., однако никогда не привели нам точного определения того, что же вы называете доказательством. Как же теперь вы можете так уверенно заявлять, будто мое доказательство — вовсе не доказательство? Как вы можете доказать, что оно не является доказательством?»
— Блестяще! — воскликнул Крейг, захлопав в ладоши. — Этот юноша далеко пойдет. А что же ответил преподаватель?
— К сожалению, — усмехнулся Фергюссон, — преподаватель оказался сухим педантом без чувства юмора и воображения. Он снизил студенту оценку за непочтительность.
— Очень жаль, — с досадой сказал Крейг. — Окажись я на месте преподавателя, непременно поставил бы этому студенту высший балл.
— Разумеется, — согласился Фергюссон, — я бы поступил точно так же. Но вы же прекрасно знаете, как часто преподаватели, лишенные творческого начала, побаиваются способных студентов.
— Должен признаться, — сказал Мак-Каллох, — что на месте этого преподавателя я бы тоже не смог ответить на вопрос студента. Разумеется, я похвалил мы его за толково поставленный вопрос, но ответить на него я бы все-таки не смог. В самом деле, что такое доказательство? Когда я сталкиваюсь с правильным доказательством, я почему-то всегда понимаю, что оно правильно; когда мне попадаются слабые аргументы, я обычно могу их указать. Но если бы меня попросили дать строгое определение доказательства, я тоже оказался бы в весьма затруднительном положении.
— Точно так же, как и почти все работающие математики, — поддержал Мак-Каллоха Фергюссон. — В девяносто девяти процентах случаев они вполне могут распознать правильность доказательства или указать на слабые места в неправильном доказательстве, однако не и состоянии привести точное определение доказательства. Нас же, логиков, интересует прежде всего анализ самого понятия «доказательство» — ведь мы хотим определить его так же строго, как и любое другое математическое понятие.
— Но раз большинство математиков все же понимают, что такое доказательство, хотя и не могут дать его четкого определения, то так ли уж важно искать его? — заметил Крейг.
— Важно, и по нескольким причинам, — ответил Фергюссон. — Но даже не будь этих причин, я все равно котел бы знать это определение ради самого определения. В истории математики часто случалось, что какие-то основные понятия, например понятие непрерывности, интуитивно понимались и осваивались еще задолго до того, как для них было введено строгое определение. Однако, получив четкое определение, данное понятие как бы переходит в новую категорию. Становится возможным установить связанные с ним факты, которые было бы очень трудно или вовсе невозможно открыть, не зная совершенно четко объема этого понятия. В этом смысле не является исключением и понятие «доказательство». Так, иногда случается, что в доказательстве используется какой-нибудь новый принцип — например аксиома выбора — и при этом часто возникает сомнение, является ли применение этого принципа законным. Так вот, строгое определение понятия «доказательство» позволяет точно указать, какие математические принципы можно использовать, а какие нельзя.
С другой стороны, особенно важно иметь точное определение доказательства тогда, когда нужно увидить, что данное математическое утверждение недоказуемо в той или иной системе аксиом. Данная ситуация очень похожа на положение дел с построением при помощи циркуля и линейки в евклидовой геометрии: там, для того чтобы показать, что некое построение (например, трисекция угла, квадратура круга или удвоение куба[6]) невозможно, требуется обычно более критическое определение понятия «построение», чем для того, чтобы показать, например, что то или иное геометрическое построение с помощью циркуля и линейки действительно возможно. То же самое происходит и с доказуемостью: чтобы продемонстрировать, что данное утверждение недоказуемо в некоторой исходной системе аксиом, требуется гораздо более строгое и критическое определение самого понятия «доказательство», чем для получения соответствующего положительного результата, а именно что данное утверждение в самом деле является доказуемым при принятии той или иной аксиомы.
— Итак, — продолжал Фергюссон, — если задана некоторая система аксиом, то доказательство в данной системе представляет собой конечную последовательность высказываний, построенную по очень строгим правилам. При этом оказывается совсем несложно чисто механическим путем решить, является ли данная последовательность высказываний доказательством в этой системе или нет. Собственно говоря, совсем несложно даже придумать машину, которая может это делать. Гораздо труднее оказывается создать такую машину, которая могла бы решать, какие высказывания в данной системе аксиом доказуемы, а какие нет.
— Ответ, я полагаю, зависит от выбора исходной системы аксиом…
— Сейчас меня интересуют вопросы механического доказательства теорем, то есть вопросы создания таких машин, которые могли бы доказывать различные математические истины. Вот, например, мое последнее детище, — сказал Фергюссон, с гордостью указав на какое-то престранное сооружение.
Крейг и Мак-Каллох несколько минут разглядывали машину, пытаясь разгадать ее назначение.
— И что же она умеет? — спросил наконец Крейг.
— Она может доказывать различные утверждения, касающиеся положительных целых чисел, — ответил Фергюссон. — Я использую язык, в котором имеются имена для разных множеств чисел, — точнее, подмножеств положительных целых чисел. При этом существует бесконечно много таких числовых множеств, которые поддаются наименованию на этом языке. Например, у нас имеются специальные