приближенной формулой

 

где tp определяется из условия Φ (tp)=P по табл. П.3, в которой помещены значения интегральной функции нормированного нормального распределения.

Тогда границы доверительного интервала для среднеквадратического отклонения результатов наблюдений при доверительной вероятности α=1-q вычисляются по формулам (47) при значениях χk, равных

   (49)

Так, если в условиях предыдущей задачи среднеквадратическое отклонение определено на основании n=42 измерений, то для α=1-q=0.90 из табл. П.3 находим:

t0.5q = t0.05 = –1,6449, t1-0.5q = t0.95 = +1,6449.

Величины χk при k=n–1=41 составляют:

 

Границы доверительного интервала:

 

4.7. Проверка нормальности распределения результатов наблюдений

В предыдущих разделах было показано, что результаты наблюдений можно оценить наиболее полно, если их распределение является нормальным. Поэтому исключительно важную роль при обработке результатов наблюдений играет проверка нормальности распределения.

Эта задача представляет собой частный случай более общей проблемы, заключающейся в подборе теоретической функции распределения, в некотором смысле наилучшим образом согласующейся с опытными данными.

При большом числе результатов наблюдений (n>40) данная задача решается в следующем порядке.

Весь диапазон полученных результатов наблюдений Xmax… Xmin разделяют на r интервалов шириной ΔXi (i=1,2,…r) и подсчитывают частоты mi, равные числу результатов, лежащих в каждом i-м интервале, т. е. меньших или равных его правой и больших левой границы.

Отношения

   (50)

где n — общее число наблюдений, называются частостями и представляют собой статистические оценки вероятностей попадания результата наблюдений в i-й интервал. Распределение частот по интервалам образует статистическое распределение результатов наблюдений.

Если теперь разделить частость на длину интервала, то получим величины

   (51)

являющиеся оценками средней плотности распределения в интервале ΔXi.

Отложим вдоль оси результатов наблюдений (рис. 11) интервалы ΔXi в порядке возрастания индекса i и на каждом интервале построим прямоугольник с высотой, равной pi*. Полученный график называется гистограммой статистического распределения.

Площадь суммы всех прямоугольников равна единице:

 

При увеличении числа наблюдений число интервалов можно увеличить. Сами интервалы уменьшаются, и гистограмма все больше приближается к плавной кривой, ограничивающей единичную площадь, — к графику плотности распределения результатов наблюдений.

При построении гистограмм рекомендуется пользоваться следующими правилами:

1. Число интервалов выбирается в зависимости от числа наблюдений согласно рекомендациям табл.6.

Таблица 6

n r
40–100 7–9
100–500 8–12
500–1000 10–16
1000–10000 12–22

2. Длины интервалов удобнее выбирать одинаковыми. Однако если распределение крайне неравномерно, то в области максимальной концентрации результатов наблюдений следует выбирать более узкие интервалы.

3. Масштабы по осям гистограммы должны быть такими, чтобы отношение ее высоты к основанию составляло примерно 5÷8.

Пример. Было выполнено 100 измерений среднего диаметра резьбового калибра. Результаты наблюдений лежат в диапазоне 8.911–8.927 мм, т. е. зона распределения результатов составляет 0.016 мм. Весь диапазон удобно разделить на восемь равных интервалов через 0.002 мм. В табл. 7 приведены частоты mi, частости Pi* и плотности p* статистического распределения.

Таблица 7

Вы читаете Всё о метрологии
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ОБРАНЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату