n1,n2, …,nm — числа наблюдений в каждом ряду;

m — число рядов.

Если результаты наблюдений во всех рядах распределены нормально, то нормально распределены и все m средних арифметических (j=1, 2,…, m) с дисперсиями :

 ,

Q – истинное значение измеряемой величины (при условии, что систематические погрешности исключены).

Для практической обработки результатов неравнорассеянных рядов наблюдений необходимо ввести параметр вес отдельных средних арифметических:

 .

Веса характеризуют степень нашего доверия к соответствующим рядам наблюдений. Чем больше число наблюдений в каждом данном ряду и чем меньше дисперсия результатов наблюдений, тем больше степень доверия к полученному при этом среднему арифметическому и с тем большим весом оно будет учтено при определении оценки истинного значения измеряемой величины

 .  (67)

Иногда удобно пользоваться безразмерными весовыми коэффициентами

 ,  (68)

тогда выражение для среднего взвешенного приобретает простой вид

 .  (69)

В соответствии со свойствами оценок максимального правдоподобия дисперсия среднего взвешенного должна равняться единице, деленной на математическое ожидание второй производной от логарифмической функции правдоподобия:

 .  (70)

Отсюда следует, что дисперсия среднего взвешенного меньше дисперсии любого из исходных средних арифметических отдельных рядов наблюдений и поэтому при обработке неравнорассеянных рядов наблюдений точность измерений повышается.

Если теоретические дисперсии  неизвестны, то пользуются их оценками , с помощью которых определяют веса или весовые коэффициенты.

При малом числе нормально распределенных результатов наблюдений пользуются распределением Стьюдента с числом степеней свободы

 .  (71)

Если же об исходных распределениях нет никаких заслуживающих внимания данных, то на основании центральной предельной теоремы можно все-таки предполагать, что распределение среднего взвешенного нормально, поскольку оно является суммой большого числа случайных величин с конечными дисперсиями и математическими ожиданиями.

Пример. Тремя коллективами экспериментаторов с помощью различных методов измерения были получены следующие значения ускорения свободного падения (со среднеквадратическими отклонениями результатов измерений):

g=(981.9190±0.0004) смˉ²;

g=(981.9215±0.0016) смˉ²;

g=(981.9230±0.0020) смˉ²;

Весовые коэффициенты отдельных результатов вычислим по формуле (68):

 

Среднее взвешенное в соответствии с уравнением (69) составляет:

 

и его дисперсия (70)

 

6.3. Обработка результатов косвенных измерений

При косвенных измерениях значение искомой величины получают на основании известной зависимости, связывающей ее с другими величинами, подвергаемыми прямым измерениям.

Вначале рассмотрим тот простейший случай, когда искомая величина QZ определяется как сумма двух величин QX и QY:

QZ = QX + QY   (72)

Поскольку результаты прямых измерений величин QX и QY (после исключения систематических погрешностей) включают в себя некоторые случайные погрешности, то формулу косвенного измерения суммы можно переписать в виде

 ,  (73)

где  — средние арифметические (или средние взвешенные), полученные при обработке результатов прямых измерений величин QX и QY, λX и λY — случайные погрешности средних,  и λZ — оценка истинного значения косвенно измеряемой величины и его случайная погрешность.

Из уравнения (73) непосредственно вытекает справедливость двух следующих равенств:

 , λZ = λX – λY,  (74)

т.е. оценкой истинного значения косвенно измеряемой величины должна служить сумма оценок истинных значений исходных величин, случайные погрешности которых складываются.

Математическое ожидание оценки равно, очевидно, истинному значению искомой величины:

 

а ее дисперсия:

 

Входящее в это выражение математическое ожидание произведения случайных погрешностей называется корреляционным моментом и определяет степень “тесноты” линейной зависимости между погрешностями. Вместо корреляционного момента часто пользуются безразмерной величиной, называемой коэффициентом корреляции:

 .  (75)

Отсюда, в частности, следует, что коэффициент корреляции между погрешностями λX и λY средних арифметических равен коэффициенту корреляции между погрешностями δX и δY результатов отдельных измерений величин QX и QY: .

С учетом коэффициента корреляции дисперсия результата косвенных измерений, т. е. оценки истинного значения косвенно измеряемой величины,

 .  (76)

Если погрешности измерения величин QX и

Вы читаете Всё о метрологии
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату