упустили главное: основой борьбы за живучесть корабля является прочность, герметичность, пожаростойкость корпуса и отсеков корабля.
Флотским специалистам крайне нужны научно обоснованные методики расчетов для оценки:
— соотношения горючих и негорючих материалов в целом по кораблю и по всем его отсекам;
— степени угрозы взрыва в отсеке, возникновения и распространения пожаров, а также рекомендованных зон для создания рубежей обороны;
— вероятных температурных полей и потоков при пожарах в отсеках и допустимых тепловых режимов в них;
— возможности и эффективности нейтрализации любых пожаров с помощью средств многократного применения.
Живучесть корабля при больших повреждениях корпуса, в результате взрывов и пожаров, органически связана с его непотопляемостью, которая должна обеспечиваться надежной конструкцией корпуса, а также водонепроницаемыми отсеками и газонепроницаемыми, огнестойкими переборками. Опыт войн и военных конфликтов на море, аварии и катастрофы кораблей в мирное время подтверждают необходимость создания корпуса и отсеков, которые выдерживали бы комплексное воздействие огня, воды и загазованности. Разумеется, это непросто, ведь усиление конструктивной защиты приведет к увеличению водоизмещения корабля. Следовательно, задачу нужно решать комплексно, создавая противопожарные и автономные зоны, локализующие возгорание любого масштаба, и одновременно снижая массогабаритные характеристики оружия и технических средств, внедряя в практику легкие материалы повышенной прочности и используя для этого последние достижения науки и техники в самых разных областях. Одной из серьезных проблем обеспечения непотопляемости является большая стесненность нижних частей трюмов машинно-котельных отделений, энергоотсеков, отсеков подводных лодок, не позволяющая личному составу вести результативную борьбу с повреждениями корпуса, второго дна и способствующая беспрепятственному распространению воды в этих помещениях.
Надо признать, что недооценка сложности и взаимосвязанности перечисленных проблем обеспечения плавучести кораблей наиболее остро проявилась в катастрофах бпк «Отважный» (1974 г.) и атомных подводных лодок (1970, 1986, 1989 гг.).
самых опасных, связанных со значительной потерей остойчивости, уменьшением запаса плавучести. Это уже делается для каждого проекта корабля бюро-проектантами при участии центральных управлений ВМФ.
Сегодня сложный и многогранный процесс борьбы за живучесть немыслим без его автоматизации. На современных кораблях имеются автоматизированные системы для решения задач по непотопляемости. Однако жизнь требует расширения возможностей подобных систем. В частности, их нужно дополнить подсистемами индикации поступления воды и появления дыма, датчиками, постоянно отслеживающими температуру и другие параметры в отсеках. На основании таких данных вычислительная машина должна выдавать рекомендации для действий командира и экипажа, а также соответствующие команды на исполнительные органы по программам, заложенным в ЭВМ проектантом корабля. Это большая работа, связанная со значительными затратами. Однако без нее не обойтись, и она ведется по двум направлениям: укомплектованию кораблей новой вычислительной техникой и созданию программного обеспечения.
Анализ аварийных происшествий показывает, что многие из них могли бы быть предотвращены, если бы профессиональная подготовка как офицеров, так и личного состава в полной мере удовлетворяла предъявляемым к ней сегодня требованиям. Недостаточная компетентность руководящего звена, упрощенчество в подготовке к борьбе за живучесть зачастую приводят к тому, что экипаж способен успешно действовать лишь в условиях одного вида аварии (поступление воды или пожар, или авария ГЭУ и т. д.). В то же время он теряется в ситуациях, когда на корабль воздействует весь комплекс аварийных факторов. Обучение моряков на существующих ныне учебно-тренировочных судах и отсеках кораблей позволяет отрабатывать только самые первичные действия, да и к тому же в составе лишь боевого поста. Правда, для отработки командных пунктов (ГКП — ПЭЖ) существует ряд кабинетов, но они дают возможность тренироваться только в вопросах борьбы за непотопляемость. Поэтому было принято решение ориентироваться в перспективе на комплексные тренажеры, развитие которых существенно отстает от строительства серийных кораблей, поступления на флот новых образцов оружия, вооружения и военной техники.
В конце 80-х годов к созданию таких тренажеров приступили, и мы ожидаем поставки на флоты универсальных комплексных обучающих систем по борьбе за живучесть на базе персональных ЭВМ, целой серии компьютерных тренажеров с пакетами программ по подготовке операторов всех специальностей. Разработка математического обеспечения для них производится на конкурсной основе с привлечением специалистов Военно-морской академии, высших офицерских классов, военно-морских училищ и проектных организаций. Начаты разработка и внедрение автоматизированных систем локализации и тушения пожаров на ранней стадии их возникновения с использованием нетоксичных и неагрессивных по отношению к техническим средствам огнегасящих составов.
Таким образом, в Военно-морском флоте и Минсудпро-ме шел процесс оценки достаточности принимаемых конструктивных мер по обеспечению живучести, оптимизации распределения задач между личным составом и автоматизированными системами. Одновременно уточняются целесообразный уровень автоматизации управления противоава-рииными средствами, необходимая численность личного состава на командных пунктах, боевых постах и комплектация их расчетов.
Анализ обстоятельств гибели линкора «Новороссийск» в Севастопольской бухте (1955 г.) показывает, что одной из ее причин была невозможность оценить состояние корабля, получившего в днище пробоину площадью 150–170 м и сквозное разрушение взрывом всех палуб в носовой части. Как выяснилось в результате последующих расчетов, выход был один — посадить линкор на мель и спасти корабль и личный состав. Оценка состояния аварийного корабля и принятие решения является, таким образом, определяющим при борьбе за его живучесть. После этой трагедии в Корабельный устав ввели новую, 331 статью (она сохранилась и в ныне действующем), которая гласит:
«Командир корабля, старший помощник командира корабля, командир электромеханической боевой части (командир дивизиона живучести) должны:
— в совершенстве знать документацию по непотопляемости корабля;
— уметь правильно оценивать состояние корабля при его тяжелых повреждениях;
— применять эффективные меры, обеспечивающие непотопляемость корабля, его ход, управляемость и применение оружия:
— все типовые случаи наиболее вероятных и вместе с тем опасных повреждений корабля, связанные со значительным уменьшением остойчивости и запаса плавучести, должны быть заблаговременно изучены командиром корабля, старшим помощником (помощником) командира корабля и командным составом электромеханической боевой части, а отдельные варианты борьбы с такими повреждениями отработаны в процессе боевой подготовки».
К сожалению, как показали проверки на многих кораблях, эти требования в полной мере не выполнялись, а следовательно, и преданы забвению причины гибели линкора и его личного состава. Поэтому было рекомендовано на всех соединениях вновь разработать перечни и последовательность действий при наиболее вероятных и вместе с тем опасных повреждениях кораблей, связанных уже с комплексным воздействием пожара, воды, взрывов боеприпасов, аварий ГЭУ.
Боевая учеба, боевая служба, повседневная деятельность ВМФ не допускают перерывов. Только внедрение в кратчайший срок новых разработок на улучшение конструкции кораблей, повышение надежности вооружения и техники, оснащение ее современными средствами диагностики про- тивоаварийных систем и средств защиты личного состава наряду с освоением всех способов предупреждения аварийных ситуаций и борьбы за живучесть снимут ту напряженность, которая сложилась в связи с гибелью АПЛ «Комсомолец».
военного конфликта это явилось причиной гибели восьми английских кораблей и серьезных повреждений восемнадцати. Большим пожарам способствовало то, что современные корабли оказались буквально напичканы горючими материалами.