от расстояния между компьютерами. Оптоволокно оптимально на больших расстояниях. Очень большие скорости соединения SAN могут быть достигнуты, когда вместо последовательных оптических соединений станут использоваться параллельные. Разработчики Рочестера уже продемонстрировали параллельное оптико-волоконное соединение с 32 волокнами, работающее на частоте 500 МГц. Даже когда половина волокон используется для дублирования, производительность этого соединения равна 1 ГБ в секунду, что в 8 раз быстрее, чем производительность в 1 гигабит самой быстрой реализации OptiConnect. Конечно, так как SAN имеется только на самых новых системах и серверах AS/400е, OptiConnect еще несколько лет будет оставаться единственным средством объединения систем в кластер.
Можно с достаточной степенью вероятности предсказать этапы расширений поддержки кластеров с высокими параметрами готовности.
Сначала будет улучшена система удаленного журналирования и репликации объектов между системами для устранения всех единичных точек сбоя. Это повысит производительность и функциональные возможности пакетов зеркалирования и репликации наших бизнес-партнеров.
Следующим логическим шагом будет поддержка переключения дисков между системами. Тогда при сбое основной системы диски, содержащие базу данных, можно будет переключить на резервный компьютер. Это позволит избежать затрат на дублирование базы данных, но также исключит и возможность выполнения резервного копирования с вторичной системы. По этой причине некоторые заказчики могут предпочесть прежнее зеркалирование систем.
Третьим шагом будет обеспечение разделения базы данных между системами. В настоящее время IBM использует такую модель в System/390 Parallel Sysplex.
Механизм, поддерживающий как переключение, так и разделение дисков — независимые пулы вспомогательной памяти ASP (IASP), описанные в главе 8. ASP представляет собой набор дисковых устройств, в котором вся память пула выглядит одной непрерывной областью. ASP содержат различные системные объекты и применяются для оптимизации восстановления при сбоях дисков, изолируя эти сбои. Существуют один системный и до 15 пользовательских ASP.
IASP — специальная форма пользовательского ASP. Каждый IASP автономен, то есть, например, при выполнении загрузки системы IASP можно не подключать. Кроме того, IASP можно отключать, не останавливая всю систему. Задача в системе получает исключение, если пытается обратиться к объекту, находящемуся в отключенном IASP. IASP может быть подключен к одной или нескольким системам. IASP, подключенный к нескольким системам, рассматривается как ресурс кластера и может переключаться или разделяться между компьютерами кластера.
Идея создания IASP появилась в результате одной работы, проведенной возглавляемым мною отделом вскоре после объявления о выходе AS/400. Именно тогда Джим Рэнуайлер (Jim Ranweiler) исследовал способы создания кластеров AS/400 высокой готовности и пришел к концепции IASP. Мы положили эту работу на полку, пока она нам не понадобилась. Теперь, когда в наших планах — создание кластеров постоянной готовности, мы можем стряхнуть с этой работы пыль и использовать ее в AS/400.
Последняя тема этой главы — разработки аппаратных средств, предпринимаемые нами для дальнейшего улучшения соотношения цена — производительность (Ц — П) моделей серии AS/400е. За последние несколько лет наши клиенты стали свидетелями существенных улучшений в этой области. В е-серии это соотношение улучшилось примерно на 60 процентов по всем моделям, а для некоторых серверов — даже значительнее. В прошлом производительность и емкость системы улучшали без снижения цен, но чем дальше, тем больше соотношение Ц—П выходило на первый план. Сейчас цены быстро падают.
Я помню покупку своего первого ПК в 1982 году. В IBM была программа поддержки сотрудников, приобретавших в личное пользование первые IBM PC. В моей машине было 64К памяти и два 5-дюймовых дисковода (на тех первых ПК не было жестких дисков). Вместе с монохромным монитором и матричным принтером все это стоило мне 4 500 долларов. Сегодня за те же деньги я могу купить один из самых больших и мощных ПК. Я знаю это не понаслышке — я так и сделал. Но, конечно, я мог бы купить гораздо менее дорогой ПК, причем вполне приемлемой емкости и производительности.
Подобная ситуация достаточно типична и вполне иллюстрирует проблему, с которой сегодня столкнулись производители компьютеров. Несколько лет назад, большинство из нас постоянно добавляли все новые и новые приложения, что требовало адекватного увеличения объемов и производительности систем. Иными словами, пользователи тратили примерно одну и ту же сумму всякий раз, когда модернизировали свой компьютер.
Времена изменились. Увеличение емкости и производительности большинства систем превзошли потребности большинства пользователей. В результате, заказчики теперь меньше тратят на модернизацию своих компьютеров меньше, независимо от того, покупают ли ПК, AS/400 или мэйнфреймы.
Сегодня задача всех производителей компьютеров — поиск путей дальнейшего снижения себестоимости систем, сокращение цен на свою продукцию. В этом разделе мы рассмотрим два подхода, используемые для гармонизации Ц—П AS/400: универсальность и новые технологии ввода-вывода.
Для современных серверов стандарты Ц—П устанавливает индустрия ПК. Серверы на процессорах Intel с Windows NT задали планку, которой приходится соответствовать всем остальным. Пока Ц—П серверов AS/400 весьма конкурентоспособна. Однако планка не фиксирована, она продолжает снижаться. Преимущество серверов ПК состоит в универсальной аппаратуре, используемой многими производителями. Для поддержания конкурентоспособности AS/400е также переходит на универсальную аппаратуру.
Наиболее очевидный знак этого перехода — помещение компьютеров е-серии в новые корпуса, такие же, как используются для RS/6000. Большая часть компонентов внутри корпусов также одинакова для обеих систем. Использование универсальных компонентов означает меньшую стоимость учета, складирования и даже самих компонентов из-за роста объемов производства. Такая универсальнность дала IBM возможность сократить производственных расходы, сконцентрировав все производство для AS/400 и RS/6000 в Рочестере и Санта-Паломбе (Santa Palomba), Италия.
Если заглянуть внутрь новых корпусов, мы увидим вновь разработанный CEC (Central Electronics Complex)[ 84 ]. CEC состоит из основных процессоров, основной памяти, источника питания и шин ввода-вывода. Ранее при переходе на выпуск новых и более быстрых моделей IBM эти компоненты обычно заменялись. Благодаря более эффективному СЕС теперь заказчик можете обойтись просто вставкой новых плат. Вновь разработанные корпуса предназначены для использования на все время существования версии 4, что должно сократить стоимость модернизации большинства моделей е- серии.
Но есть и модели, изначально не подлежащие модернизации, разработанные так специально для сокращения цены. Такой же подход используется на рынке ПК.
IBM привержена универсальной аппаратуре на всех своих платформах, что сокращает расходы на разработку и производство компонентов, общих для нескольких систем. Неполный список универсального оборудования включает процессоры, контроллеры памяти, системные шины, адаптеры ввода-вывода, источники питания и корпуса. Общие компоненты встречаются и в серии AS/400е: процессоры PowerPC, системные шины 6хх, адаптеры PCI и соединения SAN. Результатом всей этой деятельности станет дальнейшее улучшение показателя Ц—П.