весьма ограничена. Только потому, что конкретный индивидуум ведет себя определенным образом, нельзя ожидать, что все другие будут вести себя так же. В — третьих, данные, полученные в результате изучения клинического случая, могут оказаться ретроспективными или вторичными по своему происхождению [То есть пациент может знать о каком — то событии своей биографии только со слов родственников. (
Корреляционный метод
Чтобы преодолеть ограничения метода клинических случаев, исследователи личности часто используют альтернативную стратегию, известную как
Переменными в корреляционном исследовании могут быть данные тестирования, демографические характеристики (такие как возраст, порядок рождения и социально — экономический статус), результаты измерения черт характера по методу самооценки, мотивы, ценности и установки, физиологические реакции (такие как частота сердечных сокращений, артериальное давление и кожно — гальваническая реакция), а также стили поведения. При использовании корреляционного метода психологи хотят получить ответы на такие специфические вопросы, как: влияет ли высшее образование на профессиональный успех в будущем? имеет ли отношение стресс к коронарной болезни сердца? есть ли взаимосвязь между самооценкой и одиночеством? есть ли связь между порядковым номером рождения и мотивацией достижения? Корреляционный метод не только позволяет ответить «да» или «нет» на эти вопросы, но также дать количественную оценку соответствия значений одной переменной значениям другой переменной. Для решения этой задачи психологи вычисляют статистический индекс, называемый
Численное значение коэффициента корреляции варьирует от–1 (полностью отрицательная, или обратная зависимость) через 0 (отсутствие связи) до +1 (полностью положительная, или прямая зависимость). Коэффициент, близкий по значению к нулю, означает, что две измеряемые переменные не связаны сколько — нибудь заметным образом. То есть большие или малые значения переменной
Рис. 2–2. Каждая из диаграмм иллюстрирует различную степень зависимости значений двух переменных. Каждая точка па диаграмме представляет собой показатели испытуемого по двум переменным: a — полная положительная корреляция (r = +1); b — полная отрицательная корреляция (r = -1); с — умеренная положительная корреляция (r = +0,71); d — корреляция отсутствует (r = 0).
Примером отрицательной корреляции может служить связь между частотой отсутствия студентов в аудитории и успешностью сдачи ими экзаменов. В целом, студенты, имевшие большее количество пропущенных занятий, проявляют тенденцию к получению более низких оценок на экзаменах. Студенты, имевшие меньшее количество пропусков, получали более высокие экзаменационные баллы. Другой пример — отрицательная корреляция между робостью и напористым поведением. Лица, получившие высокие баллы по показателю робости, имели склонность к нерешительному поведению, в то время как лица с низкими показателями робости проявляли себя решительными и напористыми. Чем ближе значение коэффициента корреляции к +1 или к–1, тем сильнее связь между двумя изучаемыми переменными. Так, коэффициент корреляции +0,80 отражает наличие более сильной зависимости между двумя переменными, чем коэффициент корреляции +0,30. Сходным образом, коэффициент корреляции–0,65 отражает более сильную взаимосвязь переменных, чем коэффициент корреляции–0,25. Надо иметь в виду, что величина корреляции зависит только от числового значения коэффициента, в то время как знак «+» или «-», стоящий перед коэффициентом, просто обозначает положительная это корреляция или отрицательная. Так, значение r = +0,70 отражает наличие такой же сильной зависимости, как и значение r = -0,70. Но первый пример указывает на положительную зависимость, а второй — на отрицательную. Далее, коэффициент корреляции–0,55 указывает на более сильную зависимость, чем коэффициент корреляции +0,35. Понимание этих аспектов корреляционной статистики поможет вам оценивать результаты исследований такого рода.