Корреляционный метод обладает некоторыми уникальными преимуществами. Наиболее важным является то, что он позволяет исследователям изучать большой набор переменных, которые недоступны проверке с помощью экспериментальных исследований. Например, когда речь идет об установлении связи между сексуальным насилием, перенесенным в детстве, и эмоциональными проблемами в более поздние годы жизни, корреляционный анализ может стать единственным этически приемлемым способом исследования. Аналогично, чтобы изучить, как демократический и авторитарный стили родительского воспитания соотносятся с ценностными ориентациями человека, стоит выбрать этот метод, поскольку этические соображения не дают возможности экспериментально контролировать стиль родительского воспитания.
Второе преимущество корреляционного метода состоит в том, что он дает возможность изучать многие аспекты личности в естественных условиях реальной жизни. Например, если мы хотим оценить влияние развода родителей на адаптацию и поведение детей в школе, мы должны систематически отслеживать социальные и академические успехи детей из распавшихся семей в течение определенного периода времени. Проведение подобного естественного наблюдения потребует времени и усилий, но позволит дать вполне реалистичную оценку сложного поведения. По этой причине корреляционный метод является предпочтительной исследовательской стратегией для персонологов, заинтересованных в изучении индивидуальных различий и феноменов, поддающихся экспериментальному контролю. Третье преимущество корреляционного метода заключается в том, что иногда с его помощью становится возможным предсказать некое событие, зная другое. Например, в исследовании получена умеренно высокая положительная корреляция между оценками по SAT [Scholastic Attitude Test — программа для оценки способностей к обучению. См.
Второй недостаток корреляционного метода — возможная путаница, вызванная действием третьей переменной. Для иллюстрации рассмотрим зависимость между употреблением наркотиков подростками и их родителями. Означает ли наличие корреляционной зависимости, что подростки, видя, как родители принимают наркотики, сами начинают употреблять их в еще большем количестве? Или это значит, что беспокойство при виде того, как их дети — подростки принимают наркотики, заставляет самих родителей прибегать к наркотикам, чтобы тем самым уменьшить свою тревогу? Или какой — то третий фактор сходным образом толкает подростков и взрослых к употреблению наркотиков? Может быть, подростки и их родители принимают наркотики, чтобы смириться с угнетающей нищетой, в которой они живут? То есть истинной причиной, обусловливающей наркоманию, может быть социально — экономический статус семей (например, бедность). Вероятность того, что третья переменная, которая не измеряется и о которой, может быть, даже и не подозревают, в действительности оказывает причинное влияние на обе измеряемые переменные, нельзя исключать при интерпретации результатов, полученных с помощью корреляционного метода.
Хотя корреляционный метод не предполагает установления причинно — следственной связи, из этого не следует, что причинно — следственные отношения в определенных случаях не могут быть четко установлены. Последнее особенно верно в отношении лонгитюдных корреляционных исследований — где, например, интересующие нас переменные, измеренные в одно время, коррелируют с другими переменными, о которых известно, что они появляются вслед за первыми. Рассмотрим, например, хорошо известную положительную корреляцию между курением сигарет и раком легких. Несмотря на возможность того, что какая — то третья неизвестная переменная (например, генетическая предрасположенность) может служить причиной и курения, и рака легких, мало кто сомневается, что весьма вероятная причина рака — курение, так как по времени курение предшествует заболеванию раком легких. Подобная стратегия (измерение двух переменных, разделенное определенным промежутком времени) дает возможность исследователям устанавливать причинно — следственные отношения в случаях, когда невозможно провести эксперимент. Например, на основе клинических наблюдений исследователи в течение долгого времени подозревали, что хронический стресс способствует развитию многих физиологических и психологических проблем. Недавние работы по измерению силы стресса (с использованием шкал самооценки) позволили проверить эти предположения с применением корреляционного метода. В области физиологических расстройств, например, накопленные данные свидетельствуют о следующем: стресс значимо связан с возникновением и развитием сердечно — сосудистых заболеваний, диабета, рака и различных типов инфекционных заболеваний (Elliott, Eisdorfer, 1982; Friedman, Booth — Kelley, 1987; Jemmott, Locke, 1984; Smith, Anderson, 1986; Williams, Deffenbacher, 1983). Корреляционный анализ также показал, что стресс может способствовать формированию зависимости от наркотиков (Newcomb, Harlow, 1986), сексуальных расстройств (Malatesta, Adams, 1984), а также возникновению многочисленных психических нарушений (Neufeld, Mothersill, 1980). Тем не менее, критики корреляционного подхода справедливо замечают, что могут существовать и другие факторы, искусственно усиливающие предположительную связь между стрессом и болезнью (Schroeder, Costa, 1984). Таким образом, одно предостережение остается: хотя иногда при наличии сильной корреляционной зависимости между двумя переменными напрашивается вывод о наличии причинной связи между ними, в действительности установить причинно — следственные отношения можно только экспериментальными методами.
Экспериментальный метод
Единственным способом для исследователя установить причинно — следственные отношения (то есть определить, вызывает ли изменение одной переменной изменение другой переменной) является проведение эксперимента. Именно по этой причине экспериментальный метод можно считать идеальной стратегией для изучения центральных вопросов, касающихся личности.
Ключ к пониманию экспериментального метода и основного различия между ним, методом изучения клинических случаев и корреляционным методом заключается в следующем: первый позволяет исследователю манипулировать одной переменной и в условиях тщательного контроля наблюдать ее влияние на другую интересующую его переменную. Переменная, которой манипулируют, называется