philosophical perspectives to initiate such a re-visioning. Many of the ideas to be considered here are highly speculative or counter to traditional thinking, and often controversial even within their respective fields. Other, seemingly implausible, concepts will reveal themselves to be compatible with some of the most basic and long- standing concepts of orthodox biological theorizing. Moreover, each of the ideas to be discussed already represents a vast and complex field of knowledge; we can do no more than sketch the merest outlines of a road map for future investigation, suggesting some fruitful paths of inquiry. What the ideas we are conveniently summarizing under the rubric of Biological Exuberance have in common, though, is the capacity to precipitate a breakthrough in understanding (even when, by necessity, they are presented in abbreviated form). Taken together, they offer a new mode of perception, something infinitely more valuable than yet another simplistic “answer.” Where basic paradigm shifts are concerned, we should not be puzzled by how firmly we previously held to so many different falsehoods; rather, we should be astounded that there are so many different truths (to paraphrase James Carse).85

Post-Darwinian Evolution and Chaotic Order

Nature … is fundamentally erratic, discontinuous, and unpredictable. It is full of seemingly random events that elude our models of how things are supposed to work.

—DONALD WORSTER, “The Ecology of Chaos and Harmony”86

Survival of the fittest, natural selection, random genetic mutations, competition for resources—we all know how evolution works, right? Not quite. Over the past two decades, a quiet revolution has been taking place in biology. Some of the most fundamental concepts and principles in evolutionary theory are being questioned, challenged, reexamined, and (in some cases) abandoned altogether. A new paradigm is emerging: post-Darwinian evolution.87 “Heretical” ideas are being proposed by post-Darwinian evolutionists, such as the self- organization of life, the notion that the environment can beneficially alter the genetic code, and a suite of evolutionary processes to accompany the once hegemonic principle of natural selection. Moreover, many of the developments in this theorizing reflect surprising convergences with another “new” science, chaos theory.

“Put at its simplest, the new paradigm is an insistence on pluralism in evolutionary studies.” That’s how scientists Mae-Wan Ho and Peter Saunders characterize the essence of the new thinking on evolution.88 This paradigm is tackling a number of long-standing puzzles in biology—among them, global patterns of emergence and extinction of species, “mimicry” between animals separated by geography (in which two unrelated butterfly species in different parts of the world, for example, have evolved identical appearances), and convergence between the structure of biological and inorganic forms (in which jellyfish larvae, for instance, closely resemble the patterns made by falling drops of ink in water; or the similarity between animal coat markings and the standing wave patterns that can be generated on thin, vibrating plates). Post-Darwinian evolutionary biologists are synthesizing developments in a number of diverse disciplines such as physics, chemistry, mathematics, and molecular and developmental biology as part of their theorizing on these and other phenomena.

One proposal involves the possibility of the self-organization of life—the notion that the proteins, and in turn the enzymes and the cells, necessary for the first rudimentary life-forms may not have arisen randomly. Rather, experiments have shown that such building blocks can form “spontaneously” through the interaction of chemical and physical processes inherent in the molecules themselves and their watery medium. Similarly, convergences in form between distant species or organic and inorganic matter reveal underlying patterning processes that may actually “direct” evolutionary change. Another revolutionary proposal involves what is known as the “fluid genome”: the hypothesis that the environment can beneficially change the genes of an organism. The genetic code was previously thought to be static and inalterable (aside from random mutations), but now biologists are recognizing that a dynamic, complex, two-way interaction between environment and genetics may occur, possibly even leading to the evolution of new species.89

Although much of this theorizing is admittedly in its infancy (and even, in a few cases, on the “fringes” of the scientific establishment), some of the most respected names in evolutionary science are participating in the reevaluation of basic tenets of the theory.90 World-renowned biologist and evolutionist Edward O. Wilson is at the forefront of the discussion, even going so far as to declare that evolution is, in a sense, a form of religion—“The evolutionary epic is probably the best myth we will ever have”91—thereby putting an ironic twist on the whole creationism-evolution controversy. Perhaps what is most significant in this entire discussion is not the explanatory power of particular theories (impressive as some of these are), but the spirit of intellectual openness and vision being embraced by many evolutionists, the willingness to reexamine once ironclad principles. Nowhere is this more apparent than in the questioning of the basic principle of natural selection based on random genetic variations. A number of scientists—among them Stephen Jay Gould—have long criticized the attempt to find an adaptive explanation for “every surviving form, structure, or behavior—however bizarre, unnecessarily complex or outright crazy it may appear.”92 Of course, the limitations of such “adaptationist” explanations are precisely the problem that orthodox biology confronts when it looks at the “bizarre” behaviors of homosexuality and nonreproductive heterosexuality. If biology is finally to come to terms with these phenomena, such explanations will need to be seriously reevaluated.

There are a number of parallels between post-Darwinian thought and the emerging science of chaos. Chaos theory is, fundamentally, a recognition of the unpredictability and nonlinearity of natural (and human) phenomena, including apparently destructive or “unproductive” events such as natural catastrophes. Although originally developed in the fields of mathematics, physics, and computer science, chaos science was quickly applied to biological phenomena. In fact, the periodic fluctuations of animal and plant populations were among the first examples of “chaotic behavior” to be uncovered in the natural world. Chaos theory has since been successfully used in the analysis of a wide range of natural and social phenomena, including biological systems (from the ecosystem to the cellular level) and evolutionary processes. Indeed, chaos scientist Joseph Ford has stated that “evolution is chaos with feedback.”93 The fractal or “chaotically ordered” structure of nature has even been revealed in the behavior patterns of individual animals and in the “self-organizing” architecture of honeybee combs.94

Arrhythmias, discordant harmonies, and aperiodicities are some of the characterizations of “chaotic” natural phenomena that have been offered. These terms are attempts to convey the idea that fundamental principles of “pattern organization” direct, but do not entirely determine, the development or “shape” of biological (and other) entities. The internal dynamics of such systems generate unpredictable, but not random, patterns.95 This concept is echoed in recent reappraisals of “adaptationist” explanations for the diversity of plant and animal forms. As one ornithologist studying the proliferation and elaboration of bird plumage has observed, traditional evolutionary theory may be able to account for how a specific pattern, color, or form has developed, but it cannot explain why or how such incredible variety arose in the first place: “Such hypotheses explain a large variety of traits as divergent as a widowbird’s tail, a rooster’s comb, a peacock’s train, or the black bib of a sparrow. While these hypotheses can account for some features of the trait, they cannot account for the enormous diversity in conspicuous traits—why some birds have red heads and others long tails even though the same basic process … may be at work.”96 Most current theories of phenomena such as plumage diversity still focus on the putative functional or adaptive role of specific patterns rather than the overall range of variation. However, this is an area where the application of principles from chaos theory might yield fruitful results.97

So too for diversity of sexual and gender expression. One of the more important insights to emerge from chaos theory is that the natural world often behaves in seemingly inexplicable or “counterproductive” ways as part of its “normal” functioning. According to Sally Goerner (in her discussion of chaos, evolution, and deep ecology), “Time and again, nonlinear models show that apparently aberrant, illogical behavior is, in fact, a completely lawful part of the system.” Similarly, biologist Donald Worster remarks that “scientists are beginning to focus on what they had long managed to avoid seeing. The world is more complex than we ever imagined … and indeed, some would add, ever can imagine.” More than half a century earlier, evolutionary biologist J. B. S. Haldane presaged these thoughts when he commented that “the universe is not only queerer than we suppose, it is queerer than we can suppose”—words we used to open this book.98 Although none of these scientists is referring specifically to homosexuality, the alternate systems of gender and sexuality found throughout the animal kingdom are exactly the sort of “discontinuities” and “irrational” events that should be generated in a “chaotic” system.

Particularly relevant in this respect is Goerner’s statement of one of five basic “principles” of chaos:

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×