With these depressing realities in mind, there are two technical approaches to making a high-performance aircraft affordable. First, make it light. Every non-essential pound/kilogram imposes severe cost and performance penalties. The best example of how to make an aircraft light, simple, and advanced is the Douglas A-4 Skyhawk — Ed Heinemann's classic 1951 design — a five-ton airplane designed to deliver a one-ton nuclear bomb with a single engine of 7,700 1b of thrust. Second, make it generic. That is, make a single basic airframe design serve the widest possible range of roles and missions. Beginning in the late 1980s, under the acronym JAST (Joint Advanced Strike Technologies), a Defense Department Program Office made a serious effort to push these approaches right to the 'edge of the envelope.' The aerospace industry, seeing the only opportunity for a major new program in the opening decades of the next century, responded with enthusiasm. Now called the Joint Strike Fighter (JSF), the program office is headed by a rear admiral, who reports to an Air Force Assistant Secretary.
Pilots tend to be exceedingly suspicious of anything with the word 'joint' attached to it, unless they are talking to an orthopedic surgeon about a sports injury. From an aviator's perspective, a 'joint' aircraft is likely turn into a camel (i.e., a 'horse designed by a committee'). The three services have radically different tactical doctrines and tribal cultures, and even the most brilliant design team will face a thicket of compromises in trying to fit one airframe to such widely different customers. If you are flying an aircraft into combat, you want that feeling of confidence that only comes from knowing that the designer made no compromises with anything, including the laws of physics. JSF's program managers, aware of this issue, are striving for a relatively modest goal-80 %, 'commonality' of major structural components and systems.
JSF is actually three aircraft. A conventional takeoff and landing (CTOL) model will replace the Air Force's F-16 Fighting Falcon, with a unit price target of $28 million, and an awesome procurement target of 1,874 units. A Navy version to replace the aging F-14 Tomcat and early F/A-18 Hornet types will have a strengthened fuselage structure and special landing gear for carrier operations, raising the unit cost to between $35 and $38 million, with a requirement for at least 300 units. The Marine version, to replace the Harrier, will be capable of short takeoff and vertical landing (STOVL), at a unit price of $30–32 million. The Marines want 642 units. Three industry teams are competing for the contract. They include Boeing, McDonnell Douglas/Northrop Grumman/British Aerospace, and Lockheed Martin.
All the designs show a strong influence from the F-22 and F-23 advanced stealth fighter designs, with widely separated twin tail fins, splayed out at a sharp angle. The Boeing design has a hinged air scoop under the nose, which gives the aircraft an uncanny resemblance to a gasping fish. The inlet swings down to increase airflow to the engine at low speeds, and swings up to reduce overall drag at high speed. The twin exhaust nozzles rotate, just like on the Harrier. The McDonnell design looks like a slimmed-down F-23, with sharply swept wings mounted well aft. The Lockheed Martin design has a vertically mounted lift fan, driven during takeoff by power from the main engine, just behind the cockpit. There are small canards (auxiliary wings) mounted just forward of the main wings, which closely resemble the diamond-shaped planform of the F-22. In effect, there will be as many as nine different prototype designs, all using the Pratt & Whitney F119 turbofan developed for the F-22. This was the first turbofan capable of supersonic cruise without use of a gas-guzzling afterburner. General Electric will also continue development of its F-120 engine, which was not selected in the F-22 competition, but represents a viable alternative if F-119 development runs into difficulties.
For the JSF program, failure is not an option. Low-rate initial production is scheduled to begin in 2005, and deliveries to operational units are pegged for 2007. By that date, several generations of combat aircraft will be facing block obsolescence, even if we are lucky and no unexpected new threats emerge. Many types that are familiar sights in 1996 will have been prematurely retired, due to escalating maintenance and support costs, airframe fatigue, and normal peacetime attrition.
The Future: The Bell Boeing MV-22 Osprey
We call it a helicopter only because it takes off and lands vertically, but the V-22 Osprey really performs like a small C-130 Hercules transport. As for the importance of the program, the Osprey is designed to replace the entire fleet of CH-46 Sea Knights, which will be entering their fifth decade of service by the time that the V-22 arrives on the scene. It also represents the single biggest technological gamble in the history of the Marine Corps. On the strange wings of the Osprey, the Marines have bet not only their ability to conduct vertical envelopment assaults, but the whole future of over-the-horizon/standoff amphibious warfare.
Ever since the Wright brothers began to fly heavier-than-air vehicles on the Atlantic shore at Kitty Hawk, North Carolina, there has been a dream that you could build an airplane that would take off vertically like a helicopter and still fly like a conventional airplane. The Harrier represents one set of engineering compromises to achieve this, though at a high cost in range and payload. But even tougher to build than a fighter/bomber is a medium lift transport aircraft with the lifting performance of a CH-46 and the speed and range of a C-130 Hercules. Back in the 1950s the idea was put forth that perhaps you could place the engines of such an aircraft out on the ends of the wings, then tilt the engines in much the same way that the vectored thrust nozzles of the Harrier's Pegasus engine rotate. The first aircraft demonstrates this was the Bell XV-3, which flew in 1955, and spent eleven years testing out the tilt-rotor concept. Following this, NASA had Bell build a more advanced aircraft, the XV-15, which first flew in 1976. This incredible experimental aircraft's achievements are still legend in the flight-test world. It proved once and for all that a tilt rotor transport aircraft was not only possible, but would have some very desirable qualities.
Next came the multi-service Joint Vertical Experimental (JVX) requirement, for over five hundred tilt rotor transport aircraft for combat search and rescue (CSAR), special operations (SPECOPS), medical evacuation (MEDEVAC), and replacement of the entire fleet of CH-46 Sea Knights and CH-53D Sea Stallions. In 1983, a team of Bell-Textron and Boeing Vertol won the JVX contract for design and development of what would become known as the V-22 Osprey. Development continued throughout the 1980s, and appeared to be going well despite the usual glitches associated with any new aircraft. Then, as a cost-cutting move, Secretary of Defense Dick Cheney abruptly canceled the entire program in 1989, leaving Bell Boeing with a big nothing for all their work, and all four of the services scrambling to find replacements for the Osprey. As it turned out, they never did, and this caused a small guerrilla movement to break out among the services to revive the V-22. As if this was not enough of a challenge, there were a pair of crashes by prototype V-22s (neither of which was design-related), which gave opponents lots of ammunition for keeping the program canceled. Though no one was lost in the first accident, in the second, all seven aboard were killed; and things looked bleak for the Osprey and those who had backed it.
Then, in 1993, good things began to happen for the V-22. The coming of a new Administration allowed the Department of Defense to take a fresh look at the aircraft and the requirements it was meant to fulfill. After a small mountain of studies, the Clinton Administration decided to restart the Osprey production program, and began to work towards a planned initial operational capability for the first squadron of 2001. Since that time, the first new production Ospreys, officially designated MV- 22B (this is the Marine variant), have been mated and are moving towards final assembly. The first flight is scheduled for 1996, and the program is moving along well; it's on time and on budget. As an added bonus, the other three services have reevaluated their requirements and are beginning to get back into the V-22 program, with the Air Force's SPECOPS program first among the newcomers. Current