In addition to a pair of launchers for the new RIM-7 Sea Sparrow Surface-to-Air Missile (SAM), there were a pair of new lightweight Mk 45 5-in./127mm 54-cal. guns, to provide naval gunfire support, and mounts for six Mk 67 20mm cannons, for protection against enemy patrol boats and other threats. All of this firepower was backed up by a combination of air, surface search, and fire-control radars, as well as by a low-light television camera. Tarawa and her sisters were at the time the largest, most powerful amphibious ships ever built. They combined the best features of an LPH, LKA, LSD, and LPD, all in a single, highly survivable hull. Sailors and Marines lined up to get duty assignments to the new 'king of the 'gators.'

While the new ships were everything the Navy and Marines wanted, they came at a high price, and with a lot of teething problems. The fixed-price contracts had assumed that inflation of construction costs (labor, energy, materials, etc.) would remain stable through the early 1970s. Unfortunately, the 1970s were anything but stable. Several bouts of double-digit inflation, a five-fold increase in the cost of energy, and a huge increase in labor rates caused the construction cost of the LHAs (and everything else!) to skyrocket beyond the expectations of either Litton Ingalls or the Navy. The original plan was that $1.2 billion would buy nine Tarawas. The government wound up paying $1.6 billion for five: Tarawa (LHA-1), Saipan (LHA-2), Belleau Wood (LHA-3), Nassau (LHA-4), and Peleliu (LHA-5). Nobody had seen price inflation like that of the 1970s in over a generation, and it simply was not taken into account when the contracts were written. Since there was no 'fault' on the part of either Litton Ingalls or the Navy, the two sides agreed to an additional $400 million for completion of five units. After this forecasting breakdown, Navy contracting was changed forever. Today, contracts have a built-in growth factor to adjust for inflation (determined by the government). This 'cost-plus' contract lets the contractor and the government split cost overruns, reassuring contractors who take huge risks on billion-dollar projects that they have a chance to turn a profit someday.

Meanwhile, there were problems at the new Litton Ingalls yard with modular construction. Until engineers realized that they had made the tolerances too tight, the pre-assembled modules wouldn't fit together. They had failed to allow for the normal metal expansion and contraction that might occur between cool Mississippi mornings and the blazing heat of summer afternoons. Simply adding a little extra 'meat' to joints between modules and trimming it as they were assembled solved this problem. Another problem developed out of the LHA design itself, which tried to trim top weight by thinning down structural assemblies topside. Unhappily, the strength of the ocean sometimes exceeded the expectations of engineers. The fix for this — structural stiffening — was made when the ships came back in for refits. But generally, the new concept worked, keeping Litton Ingalls the most profitable and busy shipyard in America. As the U.S. shipbuilding industry has crumbled (in 1996 we're down to just five yards capable of building major combatants), they have remained competitive, branching out into building railroad cars and oil platforms.

While the Navy and Litton Ingalls were sorting out financial and engineering problems, the five LHAs were making their presence so much felt around the world, that the Navy and Marines soon realized they should have bought more of them, whatever their cost. While the policies of the Carter years prohibited this, the coming of the Reagan Administration changed everything. John Lehman's planned six-hundred-ship Navy included funding for new amphibious vessels and landing craft. First on the wish list was a batch of new big-deck amphibious assault carriers, based on the LHA design. The new class, designated Landing Helicopter Dockships (LHDs), would consist of five units. By 1996, seven LHDs had been contracted, with possible extra units to replace retiring LPHs. The LHDs would bear the proud names of World War II aircraft carriers. The lead ship was christened USS Wasp (LHD-1) after two carriers (CV-7 and CV-18) that served in World War II and the Cold War. Wasp was a traditional name dating back to the American Revolutionary War.

The LHD is based upon the LHA design, with significant new features. These included:

• Standoff Capability—The ability to support amphibious operations from over the horizon (OTH), utilizing the new LCAC, MV-22B Osprey, CH-53E Super Stallion, and AV-8B Harrier II V/STOL fighter bomber.

• Survivability—The capability to fight in environments contaminated by nuclear fallout, chemical agents, or biological weapons. Survivability includes active defense against patrol boats or suicidal small craft, and the ability to avoid, withstand, or repair damage from mines, bombs or cruise missiles.

• Sea Control Ship Convertibility—During the 1970s, several CNOs, including Admirals Elmo Zumwalt and James Hollaway, tried and failed to build small aircraft carriers, with up to twenty V/STOL fighter/bombers and eight to ten antisubmarine (ASW) helicopters to escort convoys and amphibious forces. These 'Sea Control Ships' would resemble the British Invincible class. The very successful Spanish light carrier Principe de Asturias is based on a U.S. design from this period that never got off the drawing board. By simply embarking with a suitable air group, the LHD could perform Sea Control missions in addition to its amphibious role.

While Wasp would be based on the good basic design of the Tarawa class LHAs, it would be a greatly improved and more capable vessel. One way to compare the two classes is to consider the five critical payload footprints discussed earlier in this chapter:

LHD vs. LHA/LPH Payload Footprints

As can be clearly seen, with the exception of vehicle space (Cargo), the LHD is superior to each of the ships it replaces. The Navy decided to trade additional Cargo space for Cargo. Provision of a chemical/biological/nuclear Collective Protection System (CPS) took up a lot of internal volume in the LHD design, but was considered essential to the ship's mission. Like any warship, the LHD is a set of design compromises. The design of Wasp has the advantage of a more spacious well deck for the new LCACs, plus more room to operate aircraft.

To better understand how these huge ships are put together, I visited the Litton Ingalls Shipbuilding plant in Pascagoula, Mississippi, on the Gulf Coast. Pascagoula is a shipbuilding town, with a bit of roughneck, wildcat spirit still left. Litton Ingalls is the largest employer in the area, which butts up against Mobile, Alabama, and Pensacola, Florida, to the east. The West Bank facility, where they build the LHDs, is a joint venture of Litton Ingalls Shipbuilding and the State of Mississippi, which issued state bonds to finance construction of the world's most advanced shipyard. It is the only new shipbuilding yard built in the last thirty years in the U.S. Other yards still build ships on slipways carved into the banks of rivers. Litton Ingalls builds them in a vast open space, where ships move along a production line of mammoth proportions. Over the past few years, Ingalls has built four different classes of warship here, including Ticonderoga class (CG-47) cruisers, Arleigh Burke class (DDG-51) destroyers, Sa'ar V class corvettes for Israel, and Wasp-class (LHD-1) amphibious carriers.

The best place to get a feel for how Ingalls works is the control tower in the middle of the facility. From over twelve stories up on the observation platform, you can see the work flow around the 611-acre yard, and it is fascinating to watch. From the railroad and truck receiving areas on the north side, raw materials and equipment feed into fabrication shops. From the moment it hits the receiving dock, every metal plate, wire spool, or equipment crate is tagged with a bar code for computerized tracking in nearly real time. This lets Litton Ingalls order materials and equipment for 'just in time' delivery, which reduces inventory costs.

Assembly takes place in five work 'Bays,' which are open areas of concrete pads overlaid with a grid of railroad tracks, surrounded by mobile cranes to lift and position ship modules as they are assembled. At the time of my visit, the Arleigh Burke-class destroyer construction occupied Bays 1 through 3 on the Eastern side of the yard. Litton Ingalls calls them the Barry class, after the first unit that they built (DDG-52). Bays 4 and 5 are assigned to work on the LHDs. The massive vessels are assembled much the way that a sandwich shop stacks a 'hoagie.' Each module is 'stuffed' with electrical, water, hydraulic, steam, and cable 'runs,' reducing the need to work deep inside a dark, partially completed ship. It also means that a ship can be brought to life and powered up much earlier, reducing the time required to make her ready for sea trials. As submodules are assembled, they move down to the south end of the bay for stacking into one of the five major modules that make up a finished LHD. Each module is stacked and welded into place, and then its lines and connections are fused, just as a surgeon might graft arteries and tendons to rejoin a severed limb. Modules I (the bow) through 4 (the stern and well deck) are stacked together and joined into a single hull at the south edge of the assembly area. By this time, each module weighs several thousand tons. These huge chunks fit together with tolerances of a few

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату