inline engines exceeding a thousand horsepower. In America, Allison did the same, and Pratt & Whitney began production of their monster, two-thousand-horsepower R-2800 radial engine in East Hartford, Connecticut. More efficiently cooled, simpler, and capable of absorbing catastrophic battle damage, the Double-Wasp and its close relatives would power a variety of successful tactical aircraft (F-6F Hellcat, F-4U Corsair, TBF/TBM Avenger, P-47 Thunderbolt, etc.), plus numerous types of bombers and transport aircraft.
The Republic P-47 Thunderbolt, called 'the Jug' by its pilots for its brutal and decidedly ungraceful lines, was originally designed by Alexander Cartvelli as a high-altitude interceptor, and it would distinguish itself as an escort fighter for the bomber fleets of the 8th Air Force over Germany. But the Thunderbolt carried a total of eight heavy.50-caliber machine guns, and could also carry bombs and rockets. Its rugged construction and immense armament rapidly led pilots to experiment with other forms of hunting. Soon Jug drivers were flying low on missions they sometimes called Rodeos, for their wild and woolly character: If it moved, it was fair game. Such missions inspired the German Army to coin a new word,
So just what can airpower do? It can make life thoroughly miserable for an enemy — especially if you can hit exactly what you want to hit. Toward this goal, America continues to lead the world. 'If you can see it, you can hit it,' goes the saying. Following this usually comes, 'If you can hit it, you can kill it.' That way of thinking shaped American air doctrine. Dive bombing and close air support were first systematized by the United States Marine Corps in Nicaragua during their early interventions there. In the late 1930s, the Army Air Corps (later the Army Air Force) adopted the ultra-secret Norden bomb-sight to bring systematic accuracy to high-altitude bombing. In World War Two, the AAF experimented successfully with the 'Razon' and 'Mazon' TV-GUIDED bombs. And the Germans conducted similar experiments, sinking an Italian battleship with their radio-command-guided Fritz-X bombs.
Such weapons have been improved over the years. Most of us can remember watching 'the luckiest guy in Iraq' on CNN. During the Gulf War, his car was perhaps two hundred yards from the impact point of a two- thousand-pound guided bomb on an Iraqi bridge. Bridges are always worth destroying. So are factories, aircraft on the ground, radio and TV towers, and microwave relays. So too, especially, are the places which generate signals and commands… because commanders are there, and killing commanders is ever the quickest way of disrupting an army. Or a whole nation. Using precision-guided munitions can be likened to sniping with bombs. All warfare is cruel and ugly, but such munitions are less cruel and ugly than the alternatives.
With the recent advent of precision-guided munitions to attack the command centers of the enemy nation with great selectivity and deadly accuracy, the promise of airpower is finally being realized. But this fulfillment is not always what people wish it to be. You want a 'surgical strike,' find yourself a good surgeon. Surgical strikes do not happen in war. Yet the phrase continues to be approvingly employed in speeches by those (usually by elected or appointed politicians) who don't know what the hell they are talking about. To state things simply, surgeons use small and very sharp knives, held with delicacy by highly trained hands, to invade and repair a diseased body. Tactical and strategic aircraft drop metal objects filled with high explosives to destroy targets. The technology is much improved over what it once was, but it will never be surgically precise. Yes, the qualitative improvement over the past fifty years is astounding, but no, it isn't magical. All the same, you would be wise not to make yourself the object of the deadly attention of American warplanes.
The newest revolution — also American in origin — is stealth. When researching
'Well, gee, sir,' I replied, 'I kinda figured that out for myself.'
Seemingly a violation of the laws of physics, stealth is really a mere perversion of them. The technology began with a theoretical paper written around 1962 by a Russian radar engineer on the diffraction properties of microwave radiation. About ten years later an engineer at Lockheed read the paper and thought, 'We can make an invisible airplane.' Less than ten years after that, such an airplane was flying over a highly instrumented test range and driving radar technicians to despair. Meanwhile men in blue suits slowly discarded their disbelief, saw the future, and pronounced it good. Very good. Several years later over Baghdad on the night of January 17th, 1991, F- 117A Black Jets of the 37th Tactical Fighter Wing proved beyond question that stealth really works.
The stealth revolution is simple to express: An aircraft can now go literally anywhere (depending only on its fuel capacity) and deliver bombs with a very high probability of killing the target (about 85 % to 90 % for a single weapon, about 98 % for two),
As in
Airpower 101
We've all seen TV cartoons that show some clever character fashioning a set of wings and then trying to fly like a bird (with thanks to Warner Bros., Chuck Jones, and Wile E. Coyote). Usually, the sequence ends with the character in a bruised and battered jumble at the bottom of some horrendous precipice, pleading for help. Fitting wings to your arms and flapping them like a bird and leaping off cliffs looks silly, and so we laugh; yet that's just how humans tried for several hundred years to achieve flight. Needless to say, it didn't work. It can't. The approach has to fail because it does not take into account the basic forces that affect flight.
Essentially, two forces help you get into the air and stay there. These forces are called thrust and lift. Working against them are another pair of forces that try to keep you grounded. These forces are called weight (mass and gravity) and drag; and their practical application to fly an aircraft safely from point A to point B constitutes the engineering discipline of aerodynamics.
For an engineer designing a combat aircraft, ignoring those forces seems as absurd as traveling backward in time. At the same time, he or she must press the limits imposed by those forces as far as possible. You want a combat aircraft to fly as close to the 'edge' as you can make it. By definition. Putting this another way: To really understand the edge, you have to understand the basic forces. And so, before we look at how well various combat aircraft succeed in approaching the edge, let's spend a little time going over the four forces — thrust, lift, weight, and drag.