Момент импульса, так же как и момент силы, требует указания точки, по отношению к которой определяется момент. Чтобы определить момент импульса относительно какой-либо точки, надо построить вектор импульса и опустить из точки перпендикуляр на его направление (рис. 61). Произведение импульса
Если тело движется свободно, то его скорость не меняется; остается неизменным и плечо по отношению к любой точке, так как движение происходит по прямой линии. Значит, и момент импульса остается при таком движении неизменным.
Так же как и для момента силы, для вращательного момента можно написать и другую формулу. Соединим радиусом местоположение тела с точкой, момент по отношению к которой нас интересует (рис. 61). Построим также проекцию скорости на направление, перпендикулярное к радиусу. Из подобных треугольников, которые построены на рисунке, следует: . Значит, , и формула для вращательного момента может быть записана и в таком виде: .
При свободном движении, как мы только что сказали, вращательный момент остается неизменным. Ну, а если на тело действует сила? Расчет показывает, что изменение вращательного момента за одну секунду равно моменту силы.
Полученный закон без труда распространяется и на систему тел. Если сложить изменения вращательных моментов всех тел, входящих в систему, то сумма их окажется равной сумме моментов сил, действующих на тела. Значит, для группы тел справедливо положение: изменение суммарного момента импульса за единицу времени равно сумме моментов всех сил.
Закон сохранения вращательного момента
Если связать два камня веревкой и с силой бросить один из них, то второй камень полетит вдогонку за первым на натянутой веревке. Один камень будет обгонять второй, перемещение вперед будет сопровождаться вращением.
Забудем про поле тяготения – пусть бросок произведен в межзвездном пространстве.
Силы, действующие на камни, равны друг другу и направлены навстречу вдоль веревки (это ведь силы действия и противодействия). Но тогда и плечи обоих сил по отношению к любой точке будут одинаковы. Равные плечи и равные, но противоположные по направлению силы дают равные и противоположные по знаку моменты сил.
Суммарный момент сил будет равен нулю. Но отсюда следует, что будет равно нулю и изменение вращательного момента, т.е. что вращательный момент такой системы остается постоянным.
Веревка, связывающая камни, понадобилась нам для наглядности. Закон сохранения вращательного момента справедлив для любой пары взаимодействующих тел, какую бы природу ни имело это взаимодействие.
Да и не только для пары. Если изучается замкнутая система тел, то силы, действующие между телами, всегда можно разбить на равное количество сил действия и противодействия, моменты которых будут попарно уничтожаться.
Закон сохранения суммарного вращательного момента универсален, верен для любой замкнутой системы тел.
Если тело вращается вокруг оси, то его вращательный момент равен
где
т.е. вращательный момент пропорционален квадрату расстояния от оси.
Сядьте на табуретку с вращающимся сидением. Возьмите в руки тяжелые гири, широко расставьте руки и попросите кого-нибудь привести вас в медленное вращение. Теперь быстрым движением прижмите руки к груди – вы неожиданно начнете вращаться быстрее. Руки в стороны – движение замедлится, руки к груди – движение ускорится. Пока из-за трения табуретка не перестанет вращаться, вы успеете несколько раз изменить свою скорость вращения.
Отчего это происходит?
Вращательный момент при неизменном количестве оборотов в случае приближения гирь к оси упал бы. Для того чтобы «скомпенсировать» это уменьшение, и увеличивается скорость вращения.
Успешно используют закон сохранения вращательного момента акробаты. Как акробат выполняет «сальто» – переворачивание в воздухе? Прежде всего – толчок от пружинящего настила или от руки партнера. При толчке тело наклонено вперед, и вес вместе с силой толчка создают мгновенный момент силы. Сила толчка создает движение вперед, а момент силы обусловливает вращение. Однако это вращение медленное, оно не произведет впечатления на зрителя. Акробат поджимает колени. «Собирая свое тело» поближе к оси вращения, акробат значительно увеличивает скорость вращения и быстро переворачивается. Такова механика «сальто».
На этом же принципе основаны движения балерины, совершающей быстрые, следующие один за другим повороты. Обычно начальный вращательный момент придает балерине ее партнер. В этот момент корпус танцовщицы наклонен; начинается медленное вращение, затем изящное и быстрое движение – балерина выпрямляется. Теперь все точки тела находятся ближе к оси вращения, и сохранение вращательного момента приводит к резкому увеличению скорости.
Вращательный момент как вектор
До сих пор речь шла о величине вращательного момента. Но вращательный момент обладает свойствами векторной величины.
Рассмотрим вращение точки по отношению к какому-либо «центру». На рис. 62 изображены два близких положения точки. Интересующее нас движение характеризуется величиной вращательного момента и плоскостью, в которой оно происходит. Плоскость движения заштрихована на рисунке – это площадь, пройденная радиусом, проведенным из «центра» к движущейся точке.
Можно объединить сведения о направлении плоскости движения и о величине момента импульса. Для этого служит вектор момента, направленный вдоль нормали к плоскости движения и равный по величине абсолютному значению момента. Однако это еще не все – нужно учесть направление движения в плоскости: ведь тело может поворачиваться около центра как по часовой стрелке, так и против нее.
Принято рисовать вектор момента импульса таким образом, чтобы, смотря против вектора, видеть поворот точки против часовой стрелки. Можно сказать и иначе: направление вектора момента импульса связано с направлением поворота так, как направление ввинчивающегося штопора связано с направлением движения его ручки.
Таким образом, если мы знаем вектор момента импульса, мы можем судить о величине момента, о