центробежные силы, и вал изогнется. Обозначим смещение вала через l. Подсчитаем эту величину. Формула для центробежной силы нам известна (см. стр. 60) – эта сила пропорциональна расстоянию от центра тяжести до оси, которое теперь есть a + l, и равна 4?2n2M (a + l), где n – число оборотов в минуту, а M – масса вращающихся частей. Центробежная сила уравновешивается упругой силой, которая пропорциональна величине смещения вала и будет равна kl, где коэффициент k характеризует жесткость вала. Итак:

kl = 4?2n2M (a + l),

откуда

Судя по этой формуле, гибкому валу не страшны большие обороты. При очень больших (пусть даже бесконечно больших) значениях n прогиб вала l не растет неограниченно. Величина k/ (4?2n2M), фигурирующая в последней формуле, обращается в нуль, а прогиб вала l становится равным величине асимметрии с обратным знаком.

Этот результат вычисления означает, что при больших оборотах асимметричное колесо, вместо того чтобы разорвать вал, изгибает его так, чтобы уничтожилось влияние асимметрии. Изгибающийся вал центрирует вращающиеся части, своим изгибом переносит центр тяжести на ось вращения и таким образом приводит к нулю действие центробежной силы.

Гибкость вала является не только не недостатком, но и, напротив, необходимым условием устойчивости. Ведь для устойчивости валу надо прогнуться на величину a и при этом не сломаться.

Внимательный читатель может заметить погрешность в проведенных рассуждениях. Если сместить «центрирующий» при больших оборотах вал из найденного нами положения равновесия и рассматривать только центробежную и упругую силы, то легко заметить, что это равновесие неустойчиво. Оказалось, однако, что кориолисовы силы спасают положение и делают это равновесие вполне устойчивым.

Турбина начинает медленно вращаться. Вначале, когда n очень мало, дробь k/ (4?2n2M) будет иметь большое значение. Пока эта дробь при увеличении числа оборотов будет больше единицы, величина прогиба вала будет иметь тот же знак, что и величина первоначального смещения центра тяжести колеса. Таким образом, в эти начальные моменты движения прогибающийся вал не центрирует колесо, а, напротив, своим изгибом увеличивает общее смещение центра тяжести, а значит, и центробежную силу. По мере увеличения числа оборотов n (но при сохранении условия k/ (4?2n2M) > 1) смещение растет и, наконец, наступает критический момент. При k/ (4?2n2M) = 1 знаменатель формулы для смещения l обращается в нуль, значит, прогиб вала становится формально бесконечно большим. При такой скорости вращения вал сломается. При запуске турбины этот момент должен быть пройден очень быстро, надо проскочить критическое число оборотов и перейти к значительно более быстрому движению турбины, при котором начнется явление самоцентрирования, описанное выше. Но что это за критический момент? Мы можем переписать его условие в следующем виде:

Или, заменяя число оборотов на период вращения при помощи соотношения n = 1/T и извлекая корень, в такой форме:

Что же за величину получили мы в правой части равенства? Формула выглядит весьма знакомой. Обратившись к стр. 110, мы видим, что в правой части у нас фигурирует собственный период колебания колеса на валу. Период 2?·sqrt (M/k) – это период, с которым колебалось бы колесо турбины массы M на валу с жесткостью k, если бы мы оттянули колесо в сторону, чтобы оно колебалось само по себе.

Итак, опасный момент – это совпадение периода вращения колеса турбины с собственным периодом колебания системы турбина – вал. В существовании критического числа оборотов повинно явление резонанса.

VII. Тяготение

На чем Земля держится?

В далекие времена на этот вопрос давали простой ответ: на трех китах. Правда, оставалось неясным, на чем держатся киты. Однако наших наивных прародителей это не смущало.

Правильные представления о характере движения Земли, о форме Земли, о многих закономерностях движения планет вокруг Солнца возникли задолго до того, как был дан ответ на вопрос о причинах движения планет.

И в самом деле, на чем «держатся» Земля и планеты? Почему они двигаются вокруг Солнца по определенным путям, а не улетают от него прочь?

Ответа на такие вопросы долгое время не было, и церковь, боровшаяся против коперниковой системы мира, использовала это для отрицания факта движения Земли.

Открытием истины мы обязаны великому английскому ученому Исааку Ньютону (1643–1727).

Известный исторический анекдот говорит, что, сидя в саду под яблоней, задумчиво наблюдая за тем, как от порывов ветра то одно, то другое яблоко падает на землю, Ньютон пришел к мысли о существовании сил тяготения между всеми телами вселенной.

В результате открытия Ньютона выяснилось, что множество, казалось бы, разнородных явлений – падение свободных тел на землю, видимые движения Луны и Солнца, океанские приливы и т.д. – представляют собой проявления одного и того же закона природы: закона всемирного тяготения.

Между всеми телами Вселенной, говорит этот закон, будь то песчинки, горошинки, камни или планеты, действуют силы взаимного притяжения.

На первый взгляд закон кажется неверным: мы что-то не замечали, чтобы притягивались друг к другу

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату