g объясняется сосредоточением дополнительных масс в месте измерения.

Не только величина g, но и направление силы тяжести может отклоняться от нормы. Если подвесить груз на нитке, то вытянутая нить покажет вертикаль для этого места. Эта вертикаль может отклониться от нормы. «Нормальное» направление вертикали известно геологам из специальных карт, на которых по данным о значениях g построена «идеальная» фигура Земли.

Представьте себе, что вы производите опыты с отвесом у подножия большой горы. Грузик отвеса притягивается Землей к ее центру и горой – в сторону. Отвес должен отклониться при таких условиях от направления нормальной вертикали (рис. 66). Так как масса Земли много больше массы горы, то такие отклонения не превышают нескольких угловых секунд.

«Нормальная» вертикаль определяется по звездам, так как для любой географической точки вычислено, в какое место неба в данный момент суток и года «упирается» вертикаль «идеальной» фигуры Земли.

Отклонения отвеса приводят иногда к странным результатам. Например, во Флоренции влияние Аппенин приводит не к притяжению, а к отталкиванию отвеса. Объяснение может быть одно: в горах есть огромные пустоты.

Замечательный результат дают измерения ускорения силы тяжести в масштабе материков и океанов. Материки значительно тяжелее океанов, поэтому, казалось бы, значения g над материками должны быть больше, чем над океанами. В действительности же значения g, промеренные вдоль одной широты над океанами и материками, в среднем одинаковы.

Объяснение опять-таки лишь одно: материки покоятся на более легких породах, а океаны – на более тяжелых. И действительно, там, где возможны непосредственные изыскания, геологи устанавливают, что океаны покоятся на тяжелых базальтовых породах, а материки – на легких гранитах.

Но сразу же возникает следующий вопрос: почему тяжелые и легкие породы так точно компенсируют различие весов материков и океанов? Такая компенсация не может быть делом случая, причины ее должны корениться в устройстве оболочки Земли.

Геологи полагают, что верхние части земной коры как бы плавают на подстилающей пластичной (т.е. легко деформируемой, как мокрая глина) массе. Давление на глубинах около 100 км должно быть всюду одинаковым, так же как одинаково давление на дне сосуда с водой, в котором плавают куски дерева разного веса. Поэтому столб вещества площадью 1 м2, от поверхности до глубины 100 км, должен иметь и под океаном, и под материком одинаковый вес.

Это выравнивание давлений (его называют изостазией) и приводит к тому, что над океаном и материками вдоль одной широтной линии значения ускорения силы тяжести g не отличаются существенно.

Местные аномалии силы тяжести служат нам так, как маленькому Муку из сказки Гауфа служила его волшебная палочка, которая стучала о землю там, где находилось золото или серебро.

Тяжелую руду нужно искать в тех местах, где g наибольшее. Напротив, залежи легкой соли обнаруживают по местным занижениям величины g. Измерить g можно с точностью до стотысячных долей от 1 см/с2.

Методы разведки при помощи маятников и сверхточных весов называют гравитационными. Они имеют большое практическое значение, в частности для поисков нефти. Дело в том, что при гравитационных методах разведки легко обнаружить подземные соляные куполы, а очень часто оказывается, что где соль, там и нефть. Причем нефть лежит в глубине, а соль ближе к земной поверхности. Методом гравитационной разведки была открыта нефть в Казахстане и в других местах.

Тяжесть под землей

Нам осталось осветить еще один интересный вопрос. Как будет меняться сила тяжести, если углубляться под землю?

Вес предмета – это результат натяжения незримых нитей, протянутых к этому предмету от каждого кусочка вещества Земли. Вес – это суммарная сила, результат сложения элементарных сил, действующих на предмет со стороны частиц Земли. Все эти силы, хотя и направлены под разными углами, тянут тело «вниз» – к центру Земли.

А какова будет тяжесть предмета, находящегося в подземной лаборатории? На него будут действовать силы притяжения и с внутренних, и с внешних слоев Земли.

Рассмотрим силы тяготения, действующие в точке, лежащей внутри земного шара, со стороны внешнего слоя. Если разбить этот слой на тонкие слои, вырезать в одном из них маленький квадратик со стороной a1 и протянуть линии от периметра квадрата через точку О, тяжесть в которой нас интересует, то в другом месте слоя получится квадратик другого размера со стороной а2 (рис. 67). Силы притяжения, действующие в точке О со стороны двух квадратиков, направлены противоположно и пропорциональны по закону тяготения m1/r12 и m2/r22. Но массы квадратов m1 и m2 пропорциональны площадям квадратов. Поэтому силы тяготения пропорциональны выражениям a12r12 и a22/r22.

Однако эти отношения равны. Из рис. 67 видно, что а1/r1 и a2/r2 суть отношения соответственных сторон треугольников ОА1В1 и ОА2В2, которые будут подобными, если взять стороны квадратиков А1В1 и А2В2 очень малыми. А это мы всегда можем сделать.

Действительно, если квадраты малы, то направления отрезков А1В1 и А2В2 мало отличаются от направлений касательных к этим точкам. Тогда можно считать угол В1А1О и угол, дополнительный к A2B2O равными как углы, образованные касательной и хордой, опирающиеся на одну и ту же дугу.

Следовательно, . Кроме того, равны углы и при вершине. Значит, и треугольники подобны.

Из этого геометрического доказательства следует, что a1/r1 =

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату