Материал изложен довольно кратко, поскольку описанные базовые приемы хорошо известны в кругах С++. В книге «Effective С++» этой теме посвящен совет 34. В книге «Приемы объектно-ориентированного проектирования» [6] соответствующая методика называется «паттерн Bridge». Саттер в своей книге «Exceptional С++» [8] использует термин «идиома Pimpl».
С позиций STL прежде всего необходимо помнить о том, что классы функторов, использующие данную методику, должны поддерживать соответствующий механизм копирования. Если бы вы были автором приведенного выше класса BPFC, то вам пришлось бы позаботиться о том, чтобы копирующий конструктор выполнял осмысленные действия с объектом BPFCImpl, на который он ссылается. Возможно, простейшее решение заключается в организации подсчета ссылок при помощи указателя shared_ptr из библиотеки Boost или его аналога (см. совет 50).
В сущности, копирующий конструктор BPFC — единственное, о чем вам придется побеспокоиться в контексте данного примера, поскольку при передаче и получении функторов от функций STL всегда происходит копирование (помните, что говорилось выше о передаче по значению?). Из этого вытекают два требования: компактность и мономорфизм.
Совет 39. Реализуйте предикаты в виде «чистых» функций
Для начала разберемся с основными терминами.
В С++ все данные, используемые «чистыми» функциями, либо передаются в виде параметров, либо остаются постоянными на протяжении всего жизненного цикла функции (естественно, такие постоянные данные объявляются с ключевым словом const). Если бы данные, используемые «чистой» функцией, могли изменяться между вызовами, то вызов этой функции в разные моменты времени с одинаковыми параметрами мог бы давать разные результаты, что противоречит определению «чистой» функции.
Из сказанного должно быть понятно, что нужно сделать, чтобы предикаты были «чистыми» функциями. Мне остается лишь убедить читателя в том, что эта рекомендация обоснована. Для этого придется ввести еще один термин.
•
Обещаю, что новых терминов больше не будет. Теперь давайте разберемся, почему следует выполнять рекомендацию данного совета.
В совете 38 объяснялось, что объекты функций передаются по значению, поэтому при проектировании необходимо позаботиться о возможном копировании. Для объектов функций, являющихся предикатами, существует и другой аргумент в пользу специальной поддержки копирования. Алгоритмы могут создавать копии функторов и хранить их определенное время перед применением, причем некоторые реализации алгоритмов этим активно пользуются. Важнейшим следствием этого факта является то, что предикатные функции должны быть «чистыми».
Предположим, вы нарушили это ограничение. Ниже приведен плохо спроектированный класс предиката, который независимо от переданных аргументов возвращает true только один раз — при третьем вызове. Во всех остальных случаях возвращается false.
class BadPredicate: // Базовый класс описан
public unary_function<Widget.bool>{ // в совете 40
public:
BadPredicate():timesCalles(0){}// Переменная timesCalled
// инициализируется нулем
bool operator() (const Widget&) {
return ++timesCalled = 3:
}
private:
size_t timesCalled:
};
Предположим, класс BadPedicate
используется для исключения третьего объекта Widget из контейнера vector<Widget>:
vector<Widget> vw;// Создать вектор и заполнить его
// объектами Widget
vww.erase(remove_if(vw.begin(), // Удалить третий объект Widget.
vw.end(), // связь между erase и remove_if
BadPredcate()),// описана в совете 32
vw.end());
Программа выглядит вполне разумно, однако во многих реализациях STL из вектора vw удаляется не только третий, но и шестой элемент!
Чтобы понять, почему это происходит, необходимо рассмотреть один из распространенных вариантов реализации remove_if. Помните, что эта реализация
template<typename FwdIterator,typename Predicate>
FwdIterator remove_if(FwdIterator begin, FwdIterator end, Predicate p)
{
begin = find_if(begin,end,p):
if(begin==end) return begin;
else {
FwdIterator next=begin;
return remove_copy_if(++next,end,begin,p);
}
}
Подробности нас сейчас не интересуют. Обратите внимание: предикат р сначала передается find_if, а затем remove_copy_if. Конечно, в обоих случаях р передается по значению — то есть
Первый вызов remove_if (расположенный в клиентском коде, удаляющем третий элемент из vw) создает анонимный объект BadPredcate с внутренней переменной timesCalled, равной 0. Этот объект, известный в remove_if под именем р, затем копируется в find_if, поэтому find_if тоже получает объект BadPredicate с переменной timesCalled, равной 0. Алгоритм find_if «вызывает» этот объект, пока тот не вернет true; таким образом, объект вызывается три раза. Затем find_if возвращает управление remove_if. Remove_if продолжает выполняться и в итоге вызывает remove_copy_if, передавая в качестве предиката очередную копию р. Но переменная timesCalled объекта р по-прежнему равна 0! Ведь алгоритм find_if вызывал не р, а лишь
Чтобы обойти эту лингвистическую ловушку, проще всего объявить функцию operator() с ключевым словом const в предикатном классе. В этом случае компилятор не позволит изменить переменные класса:
class BadPredicate:
public unary_function<Widget.bool> {
public:
bool operator() (const Widget&) const {
return ++timesCalled == 3; // Ошибка! Изменение локальных данных
}// в константной функции невозможно
};
Из-за простоты этого решения я чуть было не озаглавил этот совет «Объявляйте operator() константным в предикатных классах», но этой формулировки недостаточно. Даже константные функции могут обращаться к mutablе-переменным, неконстантным локальным статическим объектам, неконстантным статическим объектам класса, неконстантным объектам в области видимости пространства имен и неконстантным глобальным объектам. Хорошо спроектированный предикатный класс должен обеспечить независимость функций operator() и от этих объектов. Объявление константных функций operator() в предикатных классах
Ранее в этом совете уже упоминалось о том, что всюду, где STL ожидает получить предикатную функцию, может передаваться либо реальная функция, либо объект предикатного класса. Этот принцип действует в обоих направлениях. В любом месте, где STL рассчитывает получить объект предикатного класса, подойдет и предикатная функция (возможно, модифицированная при помощи ptr_fun — см. совет 41). Теперь вы знаете, что функции operator() в предикатных классах должны быть «чистыми» функциями, поэтому ограничение распространяется и на предикатные функции. Следующая функция также плоха в качестве предиката, как и объекты, созданные на основе класса BadPredcate:
bool anotherBadPredicate(const Widgets.const WidgetS) {
static int timesCalled = 0: // Нет! Нет! Нет! Нет! Нет! Нет! return ++timesCalled == 3: // Предикаты должны быть 'чистыми' }// функциями, а 'чистые' функции
// не имеют состояния
Как бы вы ни программировали предикаты, они всегда должны быть «чистыми» функциями.