последовательностью аминокислот – первичной структурой кодируемой геном.

А активные, подыскивающие оптимальные условия организмы? Принцип регуляции признаков распространяется и на них. И самый простой пример – загар, меланиновый экран, не пропускающий избыточный ультрафиолет к клеткам нашего тела, который возникает у нас после продолжительного облучения солнцем или ртутной лампой.

Думаю, пора подытожить наши рассуждения. Мне всегда нравилось сравнивать фенотип с надводной частью айсберга, которая составляет одну десятую долю его подводной части – той структуры генотипа, которая не получила в фенотипе проявления. Подтаявший айсберг с грохотом переворачивается, обнажая источенную водой, необычной формы подводную часть. Организм, попадая в новые условия, может выявить новые признаки которых у него в фенотипе не было, но информация, кодирующая их структуру, и инструкции по их изготовлению находились в генотипе. Все имеющиеся по сей день в арсенале биологии факты однозначно свидетельствуют: вся информация, описывающая сложность фенотипа, содержится в генотипе (это, разумеется, не относится к таким признакам фенотипа, как синяк под глазом или ампутированная нога, но ведь эти признаки не наследуются).

Вторая аксиома биологии постулирует широкое распространение матричного копирования в жизненных процессах: новая ДНК копируется на матрице старой, мРНК копируется на матрице ДНК и, наконец, на матрице мРНК, с переходом на другой код копируется полипептидная цепь, образующая белок. Вся жизнь – это матричное копирование с последующей самосборкой копий.

Но этого мало. До сих пор мы говорили о статике жизни. Будь процесс матричного копирования на сто процентов идеально совершенным, невозможно было бы появление на свет автора этих записок, ни издателей их, ни читателей. Все мы находились бы на стадии протоклеток, плавающих в теплых водах морей докембрийской эпохи.

Пора нам рассмотреть динамику жизни. Она сводится к проблеме: подчиняясь каким закономерностям, изменяются наследственные матрицы?

Эта проблема и суть аксиомы биологии № 3.

* * *

Эта книга была уже сдана в печать, когда появились сообщения о разгадке функции интронов по крайней мере в одном гене – гене цитохрома b митохондрий дрожжей. В этом гене 6 экзонов и 5 интронов. Оказалось, что интроны все-таки кодируют аминокислотную последовательность. Белок «считывается» с первичного транскрипта РНК, из которого еще не вырезаны интроны. Французские ученые, описавшие его, назвали этот белок РНК-матюразой.

РНК-матюраза – белок-самоубийца, он рубит сук, на котором сидит. Это фермент сплэйсинга, вырезающий интроны из первичного транскрипта, уничтожающий свою матрицу. После того как интроны удалены, начинается синтез цитохрома b. Но век фермента в клетке недолог. Когда концентрация матюразы упадет до определенного уровня, снова накапливается первичный транскрипт, из которого не удаляются интроны, и снова начинается синтез РНК-матюразы. Короче, получается гибкая система авторегуляции по принципу отрицательной обратной связи.

Не все еще ясно в этой схеме. Все ли интроны участвуют в подобной регуляции или же у них есть и другие функции? Насколько широко распространено это явление? Пока не знаем. Но лед уже тронулся: мало кто сейчас будет утверждать, что интроны в синтезе белка не участвуют.

Аксиома третья

Опечатки генетических программ. Редкая книга обходится без опечаток. В издательских кругах бытует характерный исторический анекдот. В 1888 году известному издателю А. С. Суворину удалось добиться у царской цензуры разрешения на издание радищевского «Путешествия из Петербурга в Москву» тиражом… в сто экземпляров. Издательская культура была у Суворина на большой высоте, а в этом исключительном случае он даже заключил пари, что издаст книгу без единой опечатки. Книга вышла – и на обложке стояло: «Сочинение А. И. Радищева» (напомню, что великого демократа звали Александром Николаевичем).

Для чего я рассказал эту историю? Мы уже убедились, что в основе жизни лежит матричное копирование, в принципе аналогичное тому же книгопечатанию. Ясно, что в каналах передачи информации от ДНК к признакам организма и от ДНК родителей к ДНК потомков должен существовать какой-то шум – те же опечатки, только на молекулярном уровне. Каналов без шума не бывает, иное дело, что шум может быть пренебрежимо малым.

Рассмотрим сначала шумы в канале ДНК – ДНК, приводящие к изменению генетических программ. В первую очередь речь у нас пойдет об упаковке генетического материала.

ДНК или РНК простейших вирусов может представлять лишь цепочку нуклеотидов, ничем не защищенную от внешних воздействий (например, от действия ферментов нуклеаз, расщепляющих нуклеиновые кислоты). Однако у сложных вирусов она заключена в белковый защитный чехол.

ДНК бактерий также единичная последовательность. Концы ее стыкуются, и образуется кольцо, похожее на тысячекратно перекрученную ленту Мёбиуса, хорошо известную любителям математики. Ясно что при репликации кольцо это должно разрываться, иначе дочерняя последовательность будет соединена с материнской, как звенья в цепи. К бактериальной ДНК могут присоединиться молекулы белков, но в общем- то она «голая».

Иное дело у высших организмов с оформленным клеточным ядром. Прежде всего генетическая программа у них – многотомное издание. Если генетическая программа бактерии закодирована в одной молекуле ДНК, одной двойной спирали, то в ядре высших организмов – эукариот – их может быть несколько: от двух у лошадиной аскариды до нескольких тысяч у некоторых одноклеточных организмов – радиолярий и ряда растений. Такие тома называют хромосомами. Считается, что каждая хромосома содержит одну молекулу ДНК, но крайней мере у животных. Однако есть сильные доводы в пользу того, что у многих высших растений в хромосоме может быть несколько десятков, а то и сотня идентичных копий. ДНК в хромосомах чрезвычайно хитроумно уложена в комплексе со специальными ядерными белками гистонами. Иначе нельзя упаковать в микронные объемы молекулы длиной во много десятков сантиметров.

Наблюдая за хромосомами во время деления клеток, исследователи обнаружили много форм изменения наследственных программ.

Читателям должно быть известно, что при образовании половых клеток хромосомы не делятся, а расходятся в дочерние клетки, так что получаются гаметы с половинным (гаплоидным) набором хромосом. У человека, например, в нормальных клетках 46 хромосом, а в яйцеклетках и спермиях – 23. При слиянии гамет диплоидный набор восстанавливается.

Но так бывает не всегда. Порой механизм, растягивающий хромосомы по дочерним клеткам, не срабатывает. Одна гамета получается совсем без ДНК, а другая с двойным ее набором. Так возникают полиплоидные клетки и организмы; о часто это наблюдается у растений.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

2

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату