P=sqrt(Gh/c)/c.

Эта величина называется «планковской длиной». Подставляя значения с, G, h (в системе CGS с = 31010; G = 6,710-8; h=10-27), получим: Р =210-33 см.

Несмотря на такую малость, эта длина, по-видимому, сыграет важную роль в будущей теории, которая объединит гравитацию со всеми остальными взаимодействиями - электромагнитным, сильным и слабым.

У вакуума есть еще одно свойство: в сильных полях виртуальные частицы превращаются в реальные - вакуум перестраивается. Но об этом в следующем разделе.

НЕУСТОЙЧИВОСТЬ ВАКУУМА И НЕОБЫЧНЫЕ СОСТОЯНИЯ ЯДЕРНОГО ВЕЩЕСТВА

Лучший жребий физической теории - послужить основой для более общей теории, оставаясь в ней предельным случаем.

А. Эйнштейн

Явления, о которых пойдет речь, еще не обнаружены на опыте. Они пока существуют только на бумаге

как результат теоретических расчетов и оценок. Но оценки эти достаточно правдоподобны, а явления настолько важны, что прилагаются серьезные усилия, чтобы подтвердить или опровергнуть предсказания теории.

Согласно этой теории ядерное вещество, то есть вещество, состоящее из нейтронов и протонов, может находиться в различных состояниях - в обычном, в котором оно находится в атомных ядрах, и в необычном, более плотном состоянии (а может быть, и в нескольких более плотных состояниях). Это могло бы означать, что наряду с обычными ядрами существуют аномальные ядра с другими свойствами (с другой плотностью, другим отношением заряда к массе, с другой энергией связи нейтронов и протонов).

Это явление тесно связано с другим, как часто бывает в теоретической физике, на первый взгляд очень далеким, - с перестройкой вакуума в сильных полях.

В сильных полях вакуум перестраивается - в нем образуются частицы, или, точнее, появляется поле частиц определенного типа, в зависимости от характера внешнего поля. Такая перестройка подобна фазовому переходу в обычном веществе, например переходу металла в сверхпроводящее состояние. Поэтому, прежде чем изучать такой сложный объект, как вакуум, полезно вспомнить, что такое обычные фазовые переходы.

Фазовые переходы

Как известно, одно и то же вещество в зависимости от внешних условий (температуры, давления, магнитного или электрического поля, приложенного к телу, и так далее), может находиться в разных состояниях, разных «фазах». Соответствующий переход называется «фазовым переходом». Например, лед (твердая фаза воды) при температуре ниже нуля, но при достаточном давлении плавится - это означает, что вода из твердой фазы переходит в жидкую. Помимо переходов из твердого в жидкое или из жидкого в газообразное состояние, существует множество самых различных фазовых переходов. Это, например, переходы металлов из нормального состояния в сверхпроводящее, из ферромагнитного - в парамагнитное; переходы в твердых телах, связанные с изменением симметрии кристаллической решетки; переход гелия из нормального в сверхтекучее состоя

208

ние и так далее. И все это множество явлений описывается единой теорией, основы которой были заложены Л. Д. Ландау в 1937 году. С тех пор теория фазовых переходов обогатилась многими новыми идеями и превратилась в одну из интереснейших областей теоретической физики с большим количеством практических применений.

Что же отличает одну фазу от другой и что объединяет все эти разнородные явления? Оказывается, всегда существует некая величина, которая называется «параметром порядка» и которая равна нулю в одной фазе и отлична от нуля в другой. В случае перехода из твердого состояния в жидкое в качестве параметра можно взять отношение числа атомов, расположенных в правильном порядке (в кристаллической решетке), к полному числу атомов. Ниже точки плавления это отношение равно единице, выше - нулю. При этом переходе параметр порядка изменяется скачком.

В таких случаях переход называется «переходом 1-го рода».

Рассмотрим переход из ферромагнитного состояния в парамагнитное. Ферромагнитное состояние - такое, в котором находится вещество в магните. При этом магнитные моменты отдельных атомов имеют преимущественное направление - большинство магнитных моментов расположено вдоль оси магнита. По мере нагревания магнита тепловое движение все больше и больше разбрасывает магнитные моменты по разным направлениям, и при некоторой температуре средний магнитный момент атомов вдоль оси магнита обращается в нуль. Значит, вещество перешло в парамагнитное состояние, в котором магнитные моменты атомов ориентированы беспорядочно. При переходе из ферромагнитного состояния в парамагнитное роль параметра порядка играет среднее значение проекции магнитного момента на ось намагничивания. В точке перехода эта величина обращается в нуль и остается нулем после перехода в парамагнитное состояние.

Таким образом, параметр порядка не испытывает скачка в точке фазового перехода. Такой переход называется «переходом 2-го рода».

Как мы увидим, перестройка вакуума во внешних полях тоже представляет собой фазовый переход 2-го рода. Роль параметра порядка играет величина конден-сатного поля, которое возникает после перестройки.

Фазовые переходы вакуума

Как изменяется вакуум в присутствии внешнего поля, то есть поля, создаваемого внесенными в вакуум частицами? Небольшая перестройка вакуума происходит даже в слабых полях. Нас будет интересовать перестройка вакуума, внезапно наступающая при достижении некоторого критического значения внешнего поля, перестройка, вызываемая возможностью самопроизвольного рождения частиц определенного типа.

Как мы уже знаем, в вакууме непрерывно рождаются и исчезают всевозможные частицы, он заполнен такими виртуальными частицами.

Зададим себе вопрос: что случится с виртуальными частицами, если в вакууме появится сильное поле? Не сделаются ли они реальными?

Допустим, что в некоторой области пространства создано сильное поле - электрическое, гравитационное или ядерное (поле, создаваемое нуклонами). Пусть поле имеет вид потенциальной ямы. Самый простой пример потенциальной ямы - это впадина на поверхности Земли. Когда частица попадает извне в потенциальную яму, ее кинетическая энергия увеличивается, как у камня, скатывающегося с горы.

В вакууме у верхнего края ямы непрерывно рождаются и исчезают всевозможные частицы. Для того чтобы виртуальная частица стала реальной, ей согласно формуле Эйнштейна необходимо передать энергию, равную тс2, где т - масса частицы, ас - скорость света. Энергия, передаваемая полем частице при ее падении на дно ямы, может пойти либо на увеличение кинетической энергии уже родившейся частицы, либо на то, чтобы превратить виртуальную частицу у верхнего края ямы в реальную частицу, находящуюся на дне.

Что произойдет, если глубина энергетической ямы превысит величину mс2, то есть энергию покоящейся частицы? Тогда при рождении частиц будет выигрываться энергия. Действительно, чтобы создать одну покоящуюся частицу, надо затратить энергию, равную mс2, а энергия, выигрываемая при сбрасывании частицы в яму, превышает mс2. Следовательно, в присутствии сильного внешнего поля возникает неустойчивость: в вакууме будут рождаться и накапливаться частицы до тех пор, пока они не создадут дополнительное поле, которое сделает дальнейшее рождение частиц энергетически невыгодным.

210

Критические условия достигаются тем легче, чем меньше масса рождающихся частиц.

Наименьшую массу среди заряженных частиц имеют электроны. Однако они, как и все другие частицы со

Вы читаете ПОИСКИ ИСТИНЫ
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату