гипотеза, выдвинутая Аристархом. О жизни Аристарха Самосского (около 310-230 до н.э.) сохранились весьма скудные сведения. До нас дошли только его сочинения — единственные незыблемые факты его биографии. Широкая известность гелиоцентрической гипотезы Аристарха затмила другие его достижения, имеющие непреходящее значение. В начале своей деятельности молодой астроном предпринял попытку вычислить размеры небесных тел и расстояния до них. Хотя звезды и планеты были слишком малы и далеки, чтобы осуществить надежные измерения, накопленные наблюдательные данные и быстрое развитие математической науки позволили Аристарху по крайней мере приближенно оценить размеры Солнца и Луны, а также расстояния до них.

Вычисления Аристарха приведены только в одном из дошедших до нас его сочинений, но, к счастью, удалось проследить за ходом его рассуждений во всех подробностях. С современной точки зрения сочинение Аристарха Самосского «О размерах и расстояниях Солнца и Луны» представляет собой несложное упражнение по геометрии. Не следует забывать, однако, что во времена Аристарха еще не существовало тригонометрии и он намеревался установить верхние и нижние пределы для размеров Солнца и Луны, а также расстояний до них, а не вычислить точные значения этих параметров. Основным оружием Аристарха был великолепный труд Евклида — «Начала», написанные несколькими десятилетиями ранее (примерно в 300 до н.э.). Аристарх воспринял достижения Евклида в геометрии и пошел дальше. Остроумно используя новые математические результаты, Аристарх сформулировал в своем сочинении три основные вывода, касающиеся расстояний от Земли до Солнца и Луны и относительных размеров этих трех тел.

Если о значении работы Аристарха судить только по тому, насколько верны его оценки расстояний и размеров по сравнению с измеренными ныне, то нельзя не признать, что полученные им результаты содержат грубые ошибки. Но причиной значительных расхождений с истинными (или по крайней мере значительно более точными) значениями были, не ошибки в вычислениях Аристарха, а низкая точность наблюдений, которую обеспечивали примитивные инструменты того времени. Разумеется, с позиций современной математики предпринятая Аристархом дерзкая попытка «измерить небеса» с помощью немногих теорем Евклида может показаться жалкой. Но Аристарх сделал первый шаг в том направлении, которое впоследствии стало основным в развитии астрономии. Поставив вопросы «На каком расстоянии?» и «Какого размера?», Аристарх впервые предпринял попытку сокрушить два главных препятствия на пути построения человеком реалистической картины мира.

В единственном дошедшем до нас сочинении Аристарха нет ни единого слова о том, что Земля обращается вокруг Солнца. Однако знаменитый отрывок из сочинения Архимеда (бывшего на двадцать пять лет младше Аристарха) «Псаммит» не оставляет сомнений в том, что такая гипотеза была высказана Аристархом.

«Аристарх Самосский написал сочинение, содержащее ряд [новых] допущений… Он принимает, что неподвижные звезды и Солнце остаются неподвижными, а Земля движется вокруг Солнца по окружности круга, в центре которого лежит Солнце…

([9], с. 57.)

Мы не можем с уверенностью сказать, какими мотивами руководствовался Аристарх Самосский, выдвигая идею гелиоцентрической системы. Наводящую мысль он мог почерпнуть у Гераклида Понтийского, учившего, что Венера и Меркурий движутся по орбитам, в центре которых находится Солнце. Собственные оценки размеров Солнца и Луны и расстояний до них в сочетании с интуитивно постигаемыми принципами динамики могли убедить Аристарха в том, что обращение меньшего по размерам тела (Земли) вокруг большего (Солнца) физически разумнее, чем обратная картина. Аристарх Самосский мог рассматривать гелиоцентризм как привлекательную гипотезу, достойную того, чтобы извлечь из нее математические следствия. Как бы то ни было, гипотеза о Земле, обращающейся вокруг Солнца, оказалась слишком смелой для того времени и не получила особой поддержки. Кроме того, обитатели Земли не ощущали ни ее суточного вращения, ни ее годичного обращения, и их уверенность в том, что именно Земля является естественным центром мира, противодействовала признанию гелиоцентрической схемы Аристарха Самосского.

Вскоре после предпринятой Аристархом смелой попытки оценить размеры небесных тел и расстояния до них другой блестящий ученый, работавший в рамках той же традиции, но обративший свои помыслы не столь высоко, как Аристарх, оценил размеры объекта, который никому не удавалось созерцать целиком, — Земли.

Эратосфен родился примерно в 276 г. до н.э. в Кирене (Северная Африка). Не довольствуясь успехами в математике, астрономии и географии, он выступал также на поприще поэзии, истории, грамматики и литературной критики и был удостоен почетного прозвища «Бета» (по названию второй буквы греческого алфавита) за то, что во всех этих областях знания уступал лишь сильнейшим. Такая разносторонность интересов необычна даже для грека. Сведения, которыми мы располагаем ныне, позволяют утверждать, что в своей попытке измерить земной шар Эратосфен имел мало предшественников, причем их оценки были весьма грубы.

Эратосфен заметил, что в день летнего солнцестояния в Сиене (ныне Асуан) предметы не отбрасывают в полдень никакой тени, между тем как в Александрии стержень солнечных часов отбрасывает в полдень тень, длина которой составляет 1/50 окружности (рис. 19).

Рис. 19.

Предположив, что Александрия удалена от Сиены на расстоянии 5000 стадий (греческая единица длины, соответствие которой современным единицам длины точно не установлено), находясь на том же меридиане, и что солнечные лучи, падающие на Землю в Сиене и Александрии параллельны (идея, весьма нетривиальная для того времени), Эратосфен на основании простых геометрических соображений показал, что расстояние между Александрией и Сиеной, измеренное по поверхности земного шара, должно составлять 1/50 окружности Земли. Это означает, что длина самой окружности Земли составляет 250 000 стадий. В своих исходных предположениях Эратосфен допустил две ошибки: 1) Александрия и Сиена в действительности не лежат на одном меридиане; 2) расстояние между двумя городами Эратосфен оценивал по времени, за которое преодолевали расстояние от Александрии до Сиены царские гонцы. Сколь ни преходящим было значение полученного Эратосфеном результата, это первое успешное определение размеров Земли было важно прежде всего тем, что создавало прецедент и вселяло уверенность в осуществимость, казалось бы, немыслимой затеи. Человечество обретало еще одну «мерную линейку», с помощью которой оно могло надеяться распространить свои измерения до самых далеких звезд.

Количественные методы Аристарха и Эратосфена вскоре были настолько расширены и дополнены, что это привело к созданию количественной теории Солнечной системы. Разумеется, все модели небесных движений независимо от того, рассматривались ли они как чисто математические схемы или как отражения физической реальности, преследовали высшую цель — воспроизведение и предсказание траекторий, описываемых небесными телами. В различных усовершенствованиях и модификациях «математической астрономии», предложенных начиная с Евдокса и до мыслителей, к рассказу о которых мы сейчас перейдем, астрономы последующих поколений неизменно использовали те или иные идеи своих предшественников.

Вершиной и бесспорными достижениями греческой астрономии были труды Гиппарха (умер ок. 125 г. до н.э.) и Клавдия Птолемея (умер в 168 г. н.э.). Большую часть своей жизни Гиппарх провел в Родосе. В те времена (примерно в 150 г. до н.э.) Родос был одним из процветающих торговых и культурных центров Греции, соперничавшим с Александрией. Гиппарх хорошо знал о всех научных достижениях александрийцев. Он был знаком, например, с «Географией» Эратосфена и даже посвятил ей критический разбор. В распоряжении Гиппарха находились результаты более старых наблюдений вавилонских астрономов и наблюдений, произведенных в Александрии в период примерно 300-150 гг. до н.э. Разумеется, немало астрономических наблюдений провел и он сам.

Гиппарх сознавал, что схема Евдокса, в которой небесные тела прикреплены к сферам, вращающимся вокруг общего центра — центра Земли, не позволяет истолковать результаты многих его собственных

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату