Декарт и Галилео Галилей. Современная математика обязана своими выдающимися достижениями не только возросшему вниманию к ней как к науке, но и новой методологии, начало которой было положено в трудах этих двух величайших мыслителей XVII в. Попытаемся оценить хотя бы в общих чертах вклад каждого из них.
До XVII в. система научной мысли и самый характер научной деятельности находились под сильным влиянием Аристотеля. Основной особенностью его подхода к природе был поиск материальных или качественных объяснений. Последователи Аристотеля пытались объяснить земные явления, пользуясь теми качествами, которые они считали первичными, например такими понятиями, как горячее и холодное, влажное и сухое. Предполагалось, что в соответствующей комбинации такие качества порождают четыре элемента: землю, воздух, огонь и воду. Так, горячее и сухое в сочетании порождают огонь, горячее и влажное — воздух и т.д. Каждому из четырех элементов присущ особый, свойственный только ему вид движения. Огонь как самый легкий из элементов стремится подняться к небу, земная субстанция тяготеет к центру Земли. Аристотель рассматривал также и вынужденное движение, которое возникает, когда одно тело соударяется с другим и толкает его.
Твердые тела, жидкости и газы Аристотель рассматривал как три различные субстанции, наделенные различными фундаментальными качествами, а не как различные состояния одной и той же субстанции. Переход из жидкости в газ греки толковали как утрату одного качества и приобретение другого. Различие между объектами объяснялось отличием их основных качеств. Так, древние греки полагали, что для превращения ртути в золото необходимо лишить ее качества текучести, заменив его качеством твердости. Представление о неких фундаментальных качествах сохранялось и на первых этапах развития современной химии. Считалось, например, что сера содержит субстанцию горючести, которая получила особое название — флогистон, соль — субстанцию растворимости, а металлы — основную субстанцию ртути. Тепло вплоть до XIX в. считалось проявлением особой калорической субстанции: при нагревании количество этой субстанции в теле увеличивается, при охлаждении — уменьшается.
Аристотелианцы стремились классифицировать объекты по качествам или по содержащимся в них основным субстанциям. Более того, именно в классификации — этот метод и поныне доминирует в биологии — они видели свою основную задачу. Пытаясь объяснить, каким образом одно событие вызывает другое, Аристотель построил сложную схему причинно-следственных связей, в которой все сущее проистекает из четырех основных начал, или причин: формы (сущности), материи (или субстрата), источника движения (или «говорящего» начала) и цели («того, ради чего»). Чтобы разобраться в этих началах, проследим за тем, как скульптор ваяет статую. Материя в данном случае — это мрамор и инструменты скульптора, форма — образ статуи, существующий в воображении скульптора, источник движения — сам процесс создания статуи, а цель — намерение украсить статуей какое-то помещение. Наиболее важной в этом процессе была цель, или телеологическая причина, так как именно она придавала смысл всей деятельности. Какое место занимала в этой схеме математика? Поскольку математика для греков сводилась в основном к геометрии, а геометрия занималась главным образом изучением фигур, математика находила применение только при описании формы, т.е. ее роль здесь была весьма ограниченной.
В силу ряда обстоятельств аристотелевский подход к изучению природы сохранял господствующее положение и в средние века, и в эпоху Возрождения. Сочинения Аристотеля были поистине всеобъемлющими и получили более широкое распространение, чем работы других греческих авторов. Более того, учение Аристотеля о конечной цели вошло в догматы католической теологии. Конечной целью человеческой жизни на Земле провозглашалась подготовка к грядущей жизни в царстве небесном, а во всех земных явлениях церковь усматривала промысел божий.
В наши намерения, разумеется, не входит подробный рассказ об эпохе Возрождения; скажем только, что к началу XVII в. европейские ученые, несомненно, осознали важную роль математики в изучении природы. Убедительное подтверждение тому — готовность Коперника и Кеплера опрокинуть традиционную астрономию, механику и религиозные догмы во имя теории, которая по представлениям того времени обладала всего лишь одним преимуществом — математической четкостью и простотой.
Почему начиная с XVII в. наука оказалась столь результативной? Может быть, главные ее творцы — Декарт, Галилей, Ньютон, Гюйгенс и Лейбниц — были мыслителями более высокого ранга, чем их далекие предшественники? Вряд ли. Может быть, причину следует искать в более широком использовании наблюдения, эксперимента и индукции — методов, на необходимость которых указывали Роджер Бэкон и Фрэнсис Бэкон? Явно нет. Поворот к наблюдению и экспериментированию мог казаться новшеством в эпоху Возрождения, но как метод экспериментально-наблюдательный подход был известен еще древним грекам. Само по себе применение математики в физических исследованиях также не объясняет поразительных свершений современной науки: хотя ученый XVII в. и видел цель своей деятельности в выявлении математических соотношений, скрытых в многообразии явлений, поиск этих соотношений в природе не был для физики чем-то новым.
Замечательные успехи современной науки и мощный импульс к развитию новой математики, полученный от науки XVII-XIX вв., проистекли не от неукоснительного следования по стопам прошлого. В XVII в. Декарт и Галилей как бы реформировали саму природу научной деятельности. Они критически пересмотрели понятия, которыми должна оперировать наука, по-новому определили цели и задачи научной деятельности и даже изменили саму методологию науки. Новые цели и новая методология не только придали естествознанию небывалую силу, но и провозгласили нерасторжимый союз с математикой. Декарт и Галилей практически свели теоретическую физику к математике. Чтобы понять, чем вдохновлялось развитие математики начиная с XVII в., нам следует познакомиться с некоторыми идеями Декарта.
Еще в школьные годы, проведенные в школе Ла Флеш, Декарт немало размышлял о том, как человечеству удалось познать столь много истин. Декарт жил в эпоху, когда представления о мироздании, господствовавшие в Европе на протяжении тысячелетия, стали обнаруживать свою несостоятельность; обладая острым, критическим умом, он не мог довольствоваться догматическими принципами, которые столь яростно отстаивали его учителя и церковные авторитеты. Декарт еще более укрепился в своих сомнениях, когда понял, что является учеником, причем далеко не худшим, одной из наиболее известных школ Европы. К концу учебы Декарт пришел к выводу, что вообще не существует области знания, которую нельзя было бы подвергнуть сомнению.
Но все же Декарт ценил школьные занятия, признавая, например, что «красноречие обладает несравненной силой и красотой, поэзия имеет пленительные тонкости и сладости» ([15], с. 12), хотя полагал, что то и другое является скорее природным дарованием, нежели плодом учения. Почитая богословие, ибо оно учит, как достичь небес (а Декарт не менее чем кто-либо другой надеялся обрести путь к небу), он вместе с тем узнал «как вещь вполне достоверную, что путь этот открыт одинаково как для несведующих, так и для ученнейших, и что полученные путем откровения истины, которые к нему ведут, выше нашего разумения» [15] с. 14). Не осмеливаясь подвергать эти истины своему слабому суждению, он вместе с тем полагал, что для успешного их исследования необходимо заручиться помощью свыше и быть более чем человеком. Философия, по признанию Декарта, позволяет рассуждать о видимости истины любых материй и даже снискать восхищение людей более простодушных. Но, хотя она и разрабатывается в течение многих веков превосходнейшими умами, «в ней доныне нет положения, которое не служило бы предметом споров и, следовательно, не было бы сомнительным» ([15], с. 15). Подвергнув критике другие занятия, в том числе касающиеся юриспруденции, медицины и морали, Декарт пришел к выводу, что только математика обеспечивает надежный путь к истине.
Убежденный в том, что именно математика составляет сущность всей науки, Декарт заявляет, что «не приемлет и не надеется найти в физике каких-либо принципов, отличных от тех, которые существуют в Геометрии или абстрактной Математике, потому что они позволяют объяснить все явления природы и привести доказательства, не оставляющие сомнений» ([13], с. 56). Объективный мир, по Декарту, — это застывшее пространство, воплощенное в геометрии, и поэтому свойства его должны быть выводимы из первых принципов геометрии.
Декарт пытался объяснить, почему реальный мир вообще подвластен математическому описанию. По его мнению, наиболее глубокими и надежными свойствами материи являются форма, протяженность в пространстве и движение в пространстве и времени. Так как форма сводится к протяженности, Декарт относил к числу основных, или фундаментальных, реальностей только протяженность и движение. Свою мысль он выразил в максиме: «Дайте мне протяженность и движение, и я построю Вселенную».