дифракции света, то фотон ведет себя как волна. Но если с тем же светом мы исследуем фотоэффект, то фотон ведет себя как частица. В электронных лампах или в телевизионных кинескопах электроны ведут себя как частицы. Но стоит лишь пропустить пучок электронов через кристалл, как мы получим интерференционные эффекты — такие же, как в случае световых волн. В своей книге «Физика и философия» Гейзенберг писал: «Мы наблюдаем не природу саму по себе, а природу в том виде, в каком она открывается нашему умению ставить вопросы».
Естественно спросить: есть ли в таком случае сколько-нибудь существенные различия между частицей-волной и волной-частицей? Такие различия имеются, причем их достаточно много. Наиболее фундаментальное различие опять же связано со скоростью света. В то время как волна-частица никогда не достигает скорости света (в противном случае ее масса обратилась бы в бесконечность), частица-волна, будучи световой волной, имеет скорость, в точности равную скорости света. Частица-волна фотон не может иметь отличную от нуля массу покоя (т.е. обладать массой, если фотон не движется), ибо при движении со скоростью света масса фотона была бы бесконечной. Что же касается волны-частицы, то ее масса покоя не равна нулю. Можно назвать и другие различия.
Однако в данном случае нам важно подчеркнуть тот основной вывод, к которому вплотную подводит нас современное развитие физики элементарных частиц в симбиозе с космологией, а именно, что все вещество в наблюдаемой нами Вселенной нестабильно. Атомные ядра могут превращаться в лептоны, например в электроны, позитроны, кванты электромагнитного излучения (фотоны) и т.д. В свою очередь элементарные частицы могут исчезать и возникать, превращаясь друг в друга. К этому еще следует добавить, что мы живем в расширяющейся Вселенной. Естественно возникает вопрос: а есть ли вообще в этой изменчивой картине разнообразных трансформаций нечто вечное, неизменное и стабильное? На этот счет высказываются разные мнения.
Во всяком случае субстанция, в ее традиционном понимании неуничтожимая, делимая, телесная, твердая и протяженная, исчезла из наших рук и более не существует. Мы располагаем лишь некоторой совокупностью массы и энергии. Общая сумма их сохраняется, но любое из ее слагаемых может превращаться в другое. Например, при некоторых взаимодействиях частиц (скажем их столкновения в ускорителях) рождаются новые частицы, но наряду с ними присутствуют и частицы, находившиеся в пучке с самого начала. Как такое возможно? Энергия, сообщаемая частице в ускорителе, превращается в массу. Как известно, энергия и масса связаны между собой формулой Эйнштейна
Но коль скоро вся материя состоит из квантов и частиц, то почему мы не замечаем их в повседневной жизни? По той простой причине, что даже пылинка окажется горой по сравнению с любой субатомной частицей. Если бы такие частицы двигались даже с очень малой скоростью (с какой они никогда не движутся), то и тогда длина волны де Бройля была бы слишком незначительна, чтобы заметить эффекты квантования движения. Есть все основания утверждать, что когда мы выходим за рамки мира атомных явлений и приближаемся к миру обычных макроскопических явлений, квантовые понятия переходят в понятия классические. Последние действуют в мире промежуточных масштабов, или мезомасштабов, но не применимы ни к атомному, ни к космологическому мирам.
Квантовая теория с большой точностью предсказывает результаты экспериментов. Но в рамках ее адекватное понимание физических процессов пока не достигнуто. Например, квантовая теория описывает электрон математически, с помощью волновой функции. Электрон «размазан» по пространству. Его волновая функция задает вероятность, с которой электрон может быть обнаружен в любой заданной точке пространства. Но, будучи обнаружен, электрон перестает быть «размазанным»: его положение становится вполне определенным. Можно ли считать такую картину корректной? Квантовая теория правильно предсказывает положения стрелок приборов, но лежащие в основе физические явления остаются неясными. Работают математические правила, а разумная интерпретация квантового мира, как ни печально, отсутствует. По-видимому, для описания реальности нужны и волны, и частицы.
Порядок Вселенной может быть также и порядком нашего разума. Мы не просто наблюдатели реальности, мы — ее активные участники. Природа — не открытая книга, которую мы можем читать как независимые наблюдатели. Такой отказ от привычных требований физического объяснения заставил многих физиков и философов усомниться в том, что мы располагаем адекватным описанием атомных явлений. В частности, вероятностное описание, по их мнению, надлежит рассматривать как временную меру, на смену которой придет описание детерминистическое.
Не следует забывать, однако, о том, что квантовая теория возникла сравнительно недавно. Вполне возможно, что через какие-нибудь пятьдесят лет неуклюжий гибрид корпускулярной и корпускулярно- волновой теорий превратится в простую и ясную теорию. Много из того, что мы знаем о различных частицах, почерпнуто из «пунктирных следов», оставленных ими в различного рода регистрирующих устройствах. Такие следы возникают при бомбардировке частицами мишеней в ускорителях. С другой стороны, в ускорителях бомбардирующие частицы приобретают огромную энергию, и можно было бы заключить, что эта энергия превращается в массу. Можно ли считать рождающуюся таким образом массу подлинной реальностью или перед нами обманчивое ощущение, рожденное нашими ненадежными и поверхностными чувственными восприятиями? Если не вдаваться в подробности, то массу заведомо следует считать статистическим эффектом.
Как видим, понимание структуры атома имеет первостепенное значение для физики, но оно приносит поистине неоценимую пользу и химии, и биологическим исследованиям. Возможно, биохимии удастся раскрыть секреты жизни и наследственности и тем самым укрепить здоровье человека и продлить его жизнь. Как бы то ни было, можно с уверенностью сказать, что исследования природы атома оказались весьма плодотворными.
Для нас наиболее существенно было понять, что наши модели структуры атома не физические. Они от начала и до конца математические. Математика позволяет открыть и установить порядок там, где царил хаос. По словам Дирака и Гейзенберга, непротиворечивое математическое описание природы — путь к истине в физике. Необходимость наглядного представления или физического объяснения — не более чем пережиток классической физики.
XI
Реальность в теоретической физике
Мы находимся в положении, несколько аналогичном положению человека, держащего в руках связку ключей и пытающегося открыть одну за другой несколько дверей. Рано или поздно ему всегда удается подобрать ключ к очередной двери, но сомнения относительно взаимно однозначного соответствия между ключами и дверями у него остаются.{13}
Мы начали наше повествование с вопроса: существует ли внешний мир? Несмотря на противоположные утверждения Беркли и различные варианты их, высказанные другими философами, мы отвечаем на этот вопрос утвердительно. Однако наше чувственное восприятие мира не только ограниченно, но и способно вводить в заблуждение. Не многим полезнее оказывается и наша интуиция, даже обостренная опытом. Поэтому при всей искусственности математики мы вынуждены прибегать к ней, чтобы откорректировать и расширить наши представления о внешнем мире.
В свое время люди приняли идею об обращении Земли вокруг Солнца не потому, что гелиоцентрическая теория оказалась точнее предшествующей ей геоцентрической, а потому, что гелеоцентрическая теория математически проще. Если же подходить с точки зрения чувственного восприятия, то гелиоцентрическая теория заведомо менее правдоподобна.