Чтобы объяснить движения планет по их строго эллиптическим орбитам, Исаак Ньютон вывел закон всемирного тяготения — теорию гравитации, физическую природу которой ни ему самому, ни его преемникам на протяжении последующих трехсот лет объяснить так и не удалось. Чувственное восприятие и в этом случае оказалось бесполезным.

Чисто математические соображения привели Джеймса Клерка Максвелла к выводу о существовании электромагнитных волн, не доступных восприятию ни одного из наших пяти органов чувств. Однако в реальности электромагнитных волн вряд ли приходится сомневаться: любой радио- или телевизионный приемник безоговорочно убеждает нас в их существовании. Максвелл утверждал также, что свет представляет собой разновидность электромагнитных волн и в этом случае можно с полным основанием считать, что покров тайны с этого явления сняла математика.

Невозможность найти абсолютную систему отсчета для описания пространства и времени (вопреки убеждению Ньютона в абсолютности пространства и времени) и стремление «примирить» законы механики Ньютона с теорией электромагнитного поля Максвелла привели Эйнштейна к созданию специальной теории относительности. Сущность ее в несколько вольной формулировке сводится к утверждению, что длина, масса, время и одновременность определяемы не абсолютно, а только относительно наблюдателя. Экспериментальные подтверждения специальной теории относительности вынуждают нас принять эти ее выводы как твердо установленные факты. Общей теории относительности удалось объяснить явление тяготения, не прибегая к загадочной гравитации, что побуждает нас с большим доверием относиться к ней. Нашу уверенность в справедливости этой теории укрепляет и экспериментальное подтверждение сделанных на ее основе предсказаний.

Квантовая теория, занимающаяся изучением структуры атома, сама почти провоцирует нас на недоверие к ней. Явления, которые она рассматривает, мы не можем наблюдать непосредственно. Нам остается лишь судить о них по производимым ими эффектам. Разумеется, нелегко поверить, что испускаемые атомами электроны ведут себя не как частицы, а как волны, но вместе с тем их можно интерпретировать и как частицы, поведение которых имеет вероятностный характер: утверждение о том, что электрон в данный момент времени находится в определенной точке пространства, не достоверно, а справедливо лишь с определенной вероятностью. Тот факт, что микромир «населен» множеством частиц и античастиц, практически все из которых обладают отличной от нуля вероятностью распада, приводит нас к заключению, в которое трудно поверить: во внешнем мире не существует абсолютно стабильной, прочной и неразрушимой материальной субстанции.

Главы, в которых мы рассматривали теоретическую (математическую) физику, естественно, не охватывают всех ее достижений. Такая, например, область физической науки, как гидродинамика, также использует математические методы при изучении поведения воды, газов и других жидкостей, но не приводит ни к каким неожиданным выводам относительно реальности. Наша физическая интуиция вполне позволяет нам предвидеть результаты гидродинамических исследований. Иное дело электромагнитные и квантовые явления. Они либо противоречат нашему чувственному опыту, либо обнаруживают зияющий пробел в знаниях, приобретенных на основе этого опыта.

Наше современное понимание реальности разительно отличается от концепций реальности предшествующих поколений, будь то последователи Аристотеля или представители математической физики XVII-XVIII вв. По мере того как законы механики и всемирного тяготения распространялись на все новые явления, а планеты, кометы и звезды продолжали неукоснительно следовать путями, столь точно описанными математикой, мысли Декарта, Галилея и Ньютона о том, что Вселенную можно описать, пользуясь понятиями массы, силы и движения, все глубже проникали в сознание людей и превратились в убеждение почти каждого мыслящего современного человека.

Беркли в свое время охарактеризовал одно из основных понятий математического анализа — понятие производной — как «призрак покинувших нас величин». Многое в современной физической теории свидетельствует о призрачности былых, казавшихся незыблемыми классических представлений о материи. Но, облекая в математические формулировки законы, которые описывают призрачные «поля-духи», не имеющие наглядных аналогий в реальности, и выводя из этих законов следствия, мы приходим к заключениям, которые при надлежащей физической интерпретации допускают проверку с помощью наших чувственных восприятий.

Этот специфически умозрительный элемент современного естествознания неоднократно подчеркивал Эйнштейн, который, в частности, писал ([7], т. 4):

Согласно ньютоновской системе, физическая реальность характеризуется понятиями пространства, времени, материальной точки и силы (взаимодействия материальных точек)…

(с. 136.)

После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей, описываемых дифференциальными уравнениями в частных производных. Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона…

(с. 138.)

Кратко обрисованный здесь взгляд, согласно которому основы научной теории имеют умозрительный характер, еще не был господствующим в XVIII и XIX вв. Но постепенно он получает все более прочную почву, по мере того как в мышлении все более отдаляются друг от друга фундаментальные понятия и законы, с одной стороны, и те выводы, которые должны быть сопоставлены с опытом, с другой, по мере того как унифицируется логическая структура, т.е. по мере уменьшения числа логически независимых друг от друга концептуальных элементов, которые оказываются необходимой опорой всей структуры.

(с. 183.)

Современное естествознание (и в первую очередь физика) вменяет себе в заслугу освобождение от духов, дьяволов, потусторонних сил, мистики и анимизма путем рационального объяснения явлений природы. Мы можем добавить, что современная наука постепенно отошла от интуитивного и физического содержания, которое в равной мере апеллирует к чувствам; она все более исключает из системы своих представлений классический образ материи, прибегая к таким чисто синтетическим идеальным понятиям, как «поля» или «электроны», относительно которых нам известно единственное — математические соотношения, которым они удовлетворяют. С чувственным восприятием наука поддерживает лишь весьма ограниченный, хотя и жизненно важный контакт посредством длинной цепочки математических дедуктивных выводов. Естествознание стало рационализированным вымыслом — рационализированным с помощью математики.

В наши дни естествознание имеет дело с динамической реальностью, которая расширяется и меняется по мере того, как растет и изменяется наше понимание ее. Ныне мы вынуждены признавать реальность объектов и явлений, не доступных непосредственно чувственному восприятию. Чувственное подтверждение более не требуется. Природа богаче, чем говорят о ней наши органы чувств. Здравый смысл не в состоянии подсказать нам наглядные аналоги атомов, электронов, искривленного пространства или электрических полей. Недостаток наглядной модели многие, разумеется, считают существенным, в особенности те, чей опыт ограничен обыденным здравым смыслом и кто вполне естественно стремится строить свои умозаключения лишь на основании собственного опыта.

Усилия, предпринимаемые человеком с целью определить, что есть реальность, ныне учитывают новый фактор — роль наблюдателя. В XIX в. природу еще воспринимали как совокупность явлений, при рассмотрении которых фактом существования человека и его вмешательства в природу можно пренебречь, если не на практике, то по крайней мере в принципе. Но в XX в. от прежних взглядов пришлось отказаться, особенно когда речь идет об атомной и субатомной физике. Реальность элементарных частиц далеко не очевидна. Мы узнаем о них лишь по различного рода взаимодействиям их с измерительными приборами, по

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату