панели обшивки перед кабиной, освобождая выходной проем. Затем кабина начинает движение за счет механического толкателя по рельсовым направляющим (длиной 30 см), являющимися частью силовой фермы самолета, для исключения соударений, потом створки сбрасываются, после чего включаются пороховые двигатели, осуществляющие увод капсулы от самолета.
Капсула снабжена управляющими двигателями для входа в плотные слои атмосферы, радиомаяком, аккумулятором и аварийным блоком навигации, который позволяет проводить грубую навигацию на орбите. После выдачи тормозного импульса отработавшие пороховые двигатели вместе с блоком навигации отделяются от капсулы перед входом в плотные слои атмосферы. Приземление осуществляется с помощью парашюта со скоростью 8 м/с, поглощение энергии на этой скорости при ударе о земную поверхность производится за счет остаточной деформации специальной конструкции угла капсулы, заполненного сминаемыми сотами.
Перегрузки, действующие на летчика, лежат в пределах физиологических норм. Система жизнеобеспечения создает нормальные условия для работы летчика и состоит из скафандра и системы терморегулирования кабины. Скафандр обеспечивает регенерацию, очистку и осушку воздуха, кислородную подпитку и отвод излишков тепла. Система терморегулирования кабины обеспечивает нормальные внутренние температурные условия.


При загерметизированной кабине и открытом шлеме скафандра нормальные жизненные условия для летчика создаются совместной работой системы скафандра и системы терморегулирования кабины.
В случае разгерметизации кабины минимально необходимые жизненные условия для летчика создает система скафандра. В этом случае выполнение полетного задания должно быть прекращено после завершения текущего витка. Обзор из кабины обеспечивается двумя теплостойкими двойными стеклами площадью по 24 дм 2 . Стекла обеспечивают видимость при спуске и посадке до угла атаки 18 градусов включительно, что подтверждено макетными испытаниями. Вес отделяемой полностью снаряженной кабины с оборудованием, системой жизнеобеспечения, системой спасения кабины и пилотом 930 кг, вес капсулы-кабины при автономном приземлении 705 кг.
В целом, благодаря выбранным характеристикам отделяемой кабины и схеме размещения ее на самолете, составе и функциях ее подсистем, устройство отделяемой кабины получилось относительно простым, что является необходимым условием обеспечения высокой надежности. В заключении ЛИИ им. М.Громова по аванпроекту особо отмечались следующие достоинства системы аварийного спасения:
– постоянная готовность к работе;
– обеспечение необходимых условий жизнедеятельности пилота в сложных условиях на месте приземления;
– исключение необходимости установки фонаря кабины орбитального самолета как отдельного конструктивного агрегата.
Система навигации, автоматического и ручного управления орбитального самолета позволяет осуществлять все необходимые в полете операции:
– строить и удерживать точную ориентацию аппарата на орбите, необходимую при выполнении целевых задач, осуществлении маневра по изменению плоскости орбиты и при выдаче тормозного импульса для спуска с орбиты;
– управление траекторией самолета при спуске в атмосфере и при заходе на посадку (выведение самолета на направление посадочной полосы);
– ручную посадку на заданный аэродром в ночных и сложных метеоусловиях.
Система навигации и автоматического управления (СНАУ) состоит из автономной астроинерциальной системы навигации, из бортовой цифровой вычислительной машины (БЦВМ), ЖРД газодинамического управления, астрокорректора, оптического визира и радиовертикали-высотомера.
Единая БЦВМ предназначена для сбора и обработки исходной информации, поступающей от бортовых и наземных средств и определения данных, необходимых для систем автоматического и ручного (директорного) управления. Отметим, что при проектировании ОС впервые в практике отечественной авиации создавалась интегрированная система навигации и управления, причем в варианте орбитального самолета-разведчика интеграция охватывала и целевое оборудование.
Облегчая работу летчика, СНАУ не заменяет его, оставляя пилоту принятие решения о необходимости выполнения маневра по изменению плоскости орбиты для повторного прохода над целью, выполнение боевой задачи и последующей посадки, а также контроль за работой автоматики. При необходимости летчик может дублировать своими действиями автоматику, что существенно повышает надежность выполнения задания. Без летчика невозможно реализовать основного преимущества пилотируемого орбитального самолета – оперативности действий.
Алгоритм управления СНАУ на участке схода с орбиты основан на методе пространственного управления траекторией при снижении в атмосфере посредством изменения угла крена при неизменном (балансировочном) угле атаки. К моменту написания аванпроекта «Спирали» такой алгоритм управления на участке спуска в атмосфере уже был предложен для спускаемых аппаратов космических кораблей «Союз» и американских «Аполлонов», имевших малое аэродинамическое качество (К<1), но для крылатых космических кораблей он был предложен впервые. Этот алгоритм, позволяющий получить требуемые из условий нагрева, прочности и устойчивости траектории и осуществить боковое маневрирование в заданных пределах, оказался настолько удачным, что впоследствии он был принят в качестве штатного для всех крылатых спускаемых аппаратов и космических кораблей (БОР-4, БОР-5, «Буран» и «Спейс Шаттл»).
При проектировании СНАУ для «Спирали» впервые были сформулированы принципы построения радиотехнической микроволновой системы посадки. В ОКБ Микояна и в Московском институте электромеханики и автоматики были созданы первые полунатурные стенды для отработки СНАУ на дозвуковых участках полета орбитального самолета. Предельные значения разбросов точек вывода к моменту коррекции бортовой СНАУ не превышают 80-100 км. Алгоритм управления в горизонтальной плоскости основан на принципе вывода орбитального самолета в район посадки с вектором скорости, направленным вдоль ВПП, что достигается выбором точек переключения крена, определяемых по текущим параметрам движения для угла крена, заданного контуром управления в вертикальной плоскости.
Для гарантированного вывода самолета на посадочную полосу заданного аэродрома в сложных метеоусловиях предусматривается радиокоррекция фактических координат самолета после выхода его из плазмы на высоте 50-55 км (М=1 1 -12) с помощью бортовой аппаратуры, использующей информацию штатных аэродромных радиомаяков и перспективных (напомним, речь идет о 1966 г.) радиотехнических средств. Это позволяет летчику и автоматической системе управления полностью компенсировать инструментальные ошибки системы навигации до подхода к аэродрому и вывести самолет на направление посадочной полосы с динамическими ошибками не более 4-6 км на дальности 35-40 км от аэродрома и осуществить заход на посадку с работающим ТРД по курсоглиссадной зоне радиомаяка.
Для управления траекторией самолета при спуске помимо основной автоматической системы управления предусматривалась резервная упрощенная ручная система управления по директорным сигналам.
Стыковка ЭПОСА с ракетой-носителем прорабатывалась совместно с ОКБ-1 MOM и его Куйбышевским филиалом. Был произведен расчет динамики вывода самолета на орбиту и определены выводимый вес самолета (6800 кг) и возможная высота орбиты (до 150 км). При этом для уменьшения возмущающих аэродинамических моментов, действующих на ракету, самолет при выводе на орбиту должен был быть оснащен коническим обтекателем, сбрасываемым после отделения первой ступени ракеты. В этом случае никаких существенных доработок по прочности и системе управления ракетой не требуется. Доработке подле жат только стартовые и подъемные устройства с созданием наземных контрольно-проверочных и