лаборатория природы, создавшей около пяти миллионов взаимодействующих друг с другом биологических видов. Или пятьдесят миллионов? Специалистам точно не известно.
Биологи XX века, обратившись к математике, создали новую дисциплину — экологию, которая, абстрагируясь от реальной жизни сообществ животных и растений, стала рассматривать их как динамические системы. Экологи включили в свой арсенал элементарные инструменты математической физики для описания колебаний численности биологических объектов. Отдельные виды активно размножаются там, где ограничены пищевые запасы, другие находятся в стадии естественного отбора, третьи косит эпидемия. И все это может быть разделено, изолировано друг от друга и препарировано как на практике, так и в умах теоретиков от биологии.
Когда в 70-е годы хаос превратился в обособленную отрасль знания, экологам в ней была отведена специальная ниша. Ведь они тоже прибегали к математическому моделированию, сознавая, впрочем, что их модели лишь слабое приближение к реальному миру, в котором кипит жизнь. Зато осознание этого факта позволяло проникаться важностью идей, которые математики считали не более чем странными. Появление в стабильных системах неупорядоченного поведения означало для эколога отличный результат. Уравнения, применявшиеся в биологии популяций, являлись копиями физических моделей определенных фрагментов Вселенной. Тем не менее предмет исследования биологических наук превосходил сложностью любую физическую задачу. Математические модели биологов, как и те, что создавались экономистами, демографами, психологами, градостроителями, привносили в эти далекие от точности дисциплины элементы строгости и жесткости, однако напоминали карикатуры на реальный мир. Разумеется, стандарты, принятые в разных областях знания, различались: физику система уравнений Лоренца казалась простой, если не сказать примитивной, а для биолога она представляла непреодолимую трудность.
Биологи вынуждены были создать новые методы исследований, несколько по-иному подгоняя математические абстракции под реальные феномены. Физик, анализируя определенную систему (допустим, два маятника, соединенные стержнем), начинает с подбора уравнений: сначала лезет в справочник, а если там не найдется ничего подходящего, строит нужные уравнения исходя из основополагающих теоретических принципов. Зная механизм функционирования обычного маятника и учитывая жесткую связь (стержень), физик попытается решить уравнения, если такое возможно. Биологу же, напротив, никогда не придет мысль теоретически вывести необходимые уравнения, основываясь лишь на знаниях об отдельной популяции животных. Ему необходимо собрать исчерпывающие данные, а затем уж найти уравнения, которые дали бы схожий с реальностью результат. Что получится, если поместить тысячу рыб в пруд с ограниченными пищевыми ресурсами? Что изменится, если выпустить туда еще пятьдесят акул, поедающих по две рыбы в день? Какая судьба постигнет вирус, вызывающий гибель определенного количества животных и распространяющийся с известной скоростью, которая зависит от плотности популяции? Экологи идеализировали подобные задачи, стараясь решить их с помощью уже известных формул.
Зачастую такой подход срабатывал. Биология популяций выяснила кое-что об истории возникновения жизни, об отношениях хищников и их жертв, о том, как влияет изменение плотности населения в регионе на распространение болезни. Если математическая модель показывала, как процесс развивается, достигает равновесия или затухает, экологи могли представить себе обстоятельства, при которых вероятны подобные события.
Одно из весьма полезных упрощений заключалось в моделировании окружающего мира в рамках отдельных временных интервалов. Так, стрелка наручных часов секунда за секундой скачет вперед, вместо того чтобы двигаться непрерывно и незаметно. Дифференциальные уравнения, которые описывают плавно изменяющиеся во времени процессы, трудно решить. Гораздо проще использовать так называемые разностные уравнения, вполне пригодные для описания скачущих от состояния к состоянию процессов. К счастью, большинство популяций животного мира проходит свой жизненный цикл за год. Изменения, происходящие от года к году, зачастую важнее тех, что случаются в сплошной временной среде. В отличие от людей многие насекомые, например, успевают развиться, достичь зрелости, дать потомство и умереть за один сезон, и периоды жизни поколения поэтому не накладываются друг на друга. Чтобы рассчитать, какова будет численность популяции непарного шелкопряда следующей весной или сколько людей зимой заболеют корью, экологу хватает данных текущего года. Столь точная повторяемость цифр, подобная неизменяющейся подписи человека, дает весьма слабое представление о сложности системы, однако для пытливого ума и этой малости достаточно.
В сравнении с математикой Стива Смэйла математика экологии — это то же самое что десять заповедей в сравнении с Талмудом: отличный набор действующих правил, но ничего особо запутанного. Для описания популяции, численность которой с каждым годом меняется, биологу достаточно проделать вычисления, доступные даже студенту высшей школы. Предположим, что будущая численность популяции непарного шелкопряда полностью зависит от ее численности в текущем году. Вообразите, что у вас есть таблица, отражающая эту зависимость: если численность особей достигнет 31 тысячи в текущем году, следовательно, через год их будет уже 35 тысяч, и т. д. Можно представить соотношение между данными величинами как правило следующего содержания: численность популяции в будущем году есть функция от нынешней численности. Каждая функция может быть изображена графически, что позволяет охватить ее единым взглядом.
При использовании простой модели, которая подобна только что описанной, наблюдение за изменяющейся во времени численностью популяции сводится к определению начальной цифры и повторению однотипных вычислений на базе выбранной функциональной зависимости. Данные для третьего года выводятся из данных для второго и т. д. Благодаря подобному итерационному процессу можно рассмотреть историю популяции на протяжении многих лет. Тут обнаруживается своего рода обратная связь, когда результат каждого года служит исходной величиной для последующего. Обратная связь может стать неуправляемой, как бывает, когда звук из громкоговорителя проходит обратно через микрофон, мгновенно усиливаясь до невыносимого визга. С другой стороны, обратная связь способна породить и стабильность, как в случае с термостатом, который регулирует температуру в жилом доме: любое ее увеличение сверх определенного уровня ведет к охлаждению, а за снижением следует нагрев.
Возможно применение нескольких типов функций. Та, которую используют при упрощенном подходе, предполагает, что численность популяции
Впрочем, экологи давно уже поняли, что им необходимо нечто более сложное. Ученый, наблюдая за рыбами в реальном водоеме, должен постараться найти функцию, которая учитывала бы жестокую реальность, например угрозу голода или соперничество в стае. По мере роста популяции истощается запас пищи. Размеры небольшой стаи быстро растут, а чересчур большая сокращается. Возьмем жуков- вредителей. Попробуйте каждый год первого августа подсчитывать их численность в вашем саду. Чтобы упростить задачу, не принимайте во внимание птиц, болезни данного вида насекомых — учтем лишь имеющийся запас пищи. Выяснится, что жуки активно размножаются, когда их мало, но стоит им чересчур расплодиться, как они объедят весь сад и после этого погибнут от голода.
В мальтузианской схеме неограниченного увеличения численности популяции значение линейной функции роста всегда будет увеличиваться. Схема же, более приближенная к жизни, должна включать в себя особый фактор, сдерживающий рост, если популяция уже и так велика. Наиболее подходящей кажется функция, которая будет резко возрастать при небольших размерах популяции, сводить рост ее численности примерно к нулю при средних размерах и снижаться при быстром размножении особей. Пользуясь ею из раза в раз, эколог может наблюдать, как ведет себя популяция на протяжении длительных периодов времени, и придать своей модели определенную стабильность. Позаимствовав все необходимое из