нее можно было извлечь какую-то пользу. Но Смэйл тем не менее чувствовал, что такой математический прием отвечает сущности многих физических систем.
Предел мечтаний физика — дифференциальное уравнение, которое можно записать в простой форме. Ознакомившись со статьей Лоренца, которая ждала своего часа, Йорк увидел, что подобное поймут и физики. Он направил копию Смэйлу, проставив на видном месте свой адрес, чтобы получить статью обратно. Смэйл изумился, обнаружив, что безвестный метеоролог
Йорк же чувствовал, что физиков
Говоря про обучение, нельзя не отметить, что многие преподаватели физики и математики рассказывали и рассказывают о дифференциальных уравнениях, пишут их на доске и объясняют способы решения. Данные уравнения описывают плавное течение событий, действительность в сплошной среде, не расчлененной на отдельные пространственные решетки или временные интервалы. Любой студент знает, что решать дифференциальные уравнения не так-то легко, но за два с половиной столетия ученые накопили большие знания по этой проблеме. Если ответ не найти в справочнике, можно воспользоваться одним из известных методов их решения, или, как сказал бы специалист, «интегрирования». Не будет преувеличением утверждать, что большинством своих достижений современная наука обязана именно этим методам. Мы не погрешим против истины, назвав одним из гениальнейших деяний человечества эту попытку смоделировать окружающий мир. Бывает, что, овладевая этим инструментом познания природы, осваиваясь с теорией и весьма сложной практикой, ученый упускает из виду одну деталь: большинство дифференциальных уравнений неразрешимо.
«Если бы можно было найти решение дифференциального уравнения, — говорил Йорк, — в нем обязательно отсутствовала бы хаотичность, поскольку для решения нам необходимы некие инварианты — постоянные параметры, столь же неизменные, как угловой момент. Обнаружив их в достаточном количестве, можно решить уравнение. Но тем самым мы исключим хаос».
Методы решения, описываемые в справочниках, на самом деле работают. Тем не менее, сталкиваясь с нелинейной системой, ученые вынуждены или заменять ее линейной аппроксимацией, или искать иной нетрадиционный подход. Студенты весьма редко находят в справочниках нелинейные системы, которые допускают использование указанных приемов и не обнаруживают «сильной зависимости от начальных условий». Нелинейные системы, в которых на самом деле таится хаос, редко объясняются и редко изучаются. Их всегда считали отклонениями и старались не принимать во внимание, руководствуясь уже сложившейся практикой. И лишь немногие помнят, что на самом деле отклонением являются поддающиеся решению упорядоченные линейные системы! Таким образом, лишь немногие осознают, насколько природа нелинейна по своей сути. Энрико Ферми однажды воскликнул: «В Библии вовсе не сказано, что все законы природы можно объяснить с помощью линейных построений!» Математик Станислав Улам заметил, что именовать исследование хаоса «нелинейной наукой» все равно что назвать зоологию «изучением всех животных, кроме слонов».
Йорк это понял. «Во-первых, беспорядок существует. Физики и математики стремятся обнаружить некую упорядоченность. „Какой прок в хаосе?“ — говорят они. Однако ученые должны знать хаос, потому что неизбежно столкнутся с ним. Грош цена автомеханику, не имеющему представления о жировом загрязнении клапанов!» Йорк полагал, что ученые, так же как и люди, далекие от науки, могут запросто впасть в заблуждение, если они не подготовлены к восприятию сложного. Почему инвесторы настаивают на существовании цикличности в колебаниях цен на драгоценные металлы? Да потому, что периодичность — наиболее сложное упорядоченное поведение, которое они могут себе представить. Глядя на биржевые сводки, они ищут в скачках курса некий порядок. Так же действуют и экспериментаторы в мире науки, будь то физики, химики или биологи. «В прошлом люди распознавали хаотичное поведение почти везде, — отмечал Йорк. — При проведении физического эксперимента выясняется, что объекту присущи черты неустойчивости. Ученые пытаются зафиксировать их либо отказываются продолжать исследование, объясняя происходящее посторонними шумами или плохой постановкой опыта».
Йорк решил донести до физиков то, чего они не разглядели в работах Лоренца и Смэйла. Он написал статью для самого популярного научного издания из тех, где ее могли бы опубликовать, — для «Американского математического ежемесячника». (Будучи математиком, он не сумел облечь свои идеи в ту форму, которую посчитали бы приемлемой физические журналы; лишь много позже он вступил в сотрудничество с физиками.) Работа Йорка сыграла свою роль, однако в конечном счете самой замечательной ее частью стал интригующий заголовок: «Период с тремя волнами заключает в себе хаос». Коллеги советовали ему выбрать более строгую формулировку, однако Йорк упрямо стоял на своем.
Консультируясь с коллегами, Йорк поговорил и со своим другом Робертом Мэем, биологом по специальности. Как порой случается, Мэй проник в биологию «с черного хода». Сын преуспевающего адвоката, он начинал как физик-теоретик в своем родном Сиднее, в Австралии, затем прошел постдокторантуру в Гарварде. В 1971 г. его направили на годичную стажировку в Институт перспективных исследований в Принстоне. Здесь-то он, к удивлению своему, и увлекся биологией.
Даже сейчас биологи стараются по возможности не прибегать к математике. Умы же математического склада больше склоняются к физике, нежели к биологии или общественным наукам. Мэй был исключением из правила. Первоначально его интересы лежали в области абстрактных проблем устойчивости и сложности. Он пытался математически обосновать взаимозависимость этих явлений, существующих в противоборстве и неразрывной связи. Однако вскоре Мэй заинтересовался, казалось бы, несложными вопросами экологии, связанными с поведением отдельных популяций во времени. Невероятно простые модели представлялись ему неизбежным компромиссом. К тому времени, когда Мэй окончательно обосновался на одном из факультетов Принстона (в будущем австралиец станет фактически проректором по науке), он провел уже не один час, изучая варианты логистического разностного уравнения с применением математического анализа и примитивного карманного калькулятора.
Как-то, еще в Сиднее, он написал на доске в коридоре уравнение, чтобы над ним подумали студенты-выпускники. Однако уравнение зацепило его самого. «Господи, что же происходит, когда ламбда начинает превосходить точку аккумуляции?» — с напряжением размышлял Мэй. Он пытался уловить, что случается в момент приближения колебаний коэффициента роста к критической точке и превышении ее. Подставляя различные значения этого нелинейного параметра, Мэй обнаружил, что возможны коренные перемены в самой сущности системы: увеличение параметра означало возрастание степени нелинейности, что, в свою очередь, изменяло не только количественные, но и качественные характеристики результата. Подобная операция влияла как на конечное значение численности популяции, находившейся в равновесии, так и на ее способность вообще достигнуть последнего.
Когда задавалось низкое значение параметра, простая модель Мэя демонстрировала устойчивое состояние. При высоком же значении система как бы распадалась на два фрагмента и численность популяции начинала колебаться между двумя величинами. Наконец, при чрезмерном увеличении параметра поведение
Он рассмотрел простейшее уравнение, причем его компьютерная программа была аналогом программы Смэйла, а сам ученый пытался рассматривать объект