природу хаоса, начало этому положили еще работы А. Н. Колмогорова 50-х годов. Более того, советские специалисты, как правило, действовали вместе, что помогало представителям двух дисциплин преодолеть разногласия, столь частые в научной среде других стран.
Советские ученые оказались восприимчивыми к изысканиям Смэйла, чья подкова наделала много шума в 60-х годах. Блестящий физик и математик Яков Синай быстро применил аналогичные соображения в термодинамике. Едва в 70-х годах с работой Лоренца познакомились западные физики, она приобрела известность и в СССР. В 1975 г., когда Йорк и Мэй прилагали немалые усилия к тому, чтобы добиться внимания коллег, Синай и его товарищи быстро организовали в Горьком исследовательскую группу, куда вошли талантливые физики. Некоторые западные специалисты по хаосу наведывались в Союз, но большинство вынуждены были довольствоваться западной версией науки о хаосе.
Йорк и Мэй первыми на Западе в полной мере осознали важность удваивания периодов и сумели передать это осознание всему научному сообществу. Те несколько математиков, которые все-таки заметили необычное явление, отнеслись к нему как к технической проблеме, числовой странности, своего рода игре. Они сочли это не то чтобы обыденностью, а скорее, очередным фактом своей особой Вселенной.
Биологи, которым недоставало искушенности математиков да и просто поводов для изучения беспорядочного поведения упустили эти разветвления по пути к хаосу, а математики, заметив их, двигались дальше. Мэй же, наполовину математик, наполовину биолог, понял, что открыл для себя удивительный, магический мир.
Чтобы глубже проникнуть в простейшую систему, ученые нуждались в мощных вычислительных машинах. Фрэнку Хоппенштедту из Института математических наук Нью-Йоркского университета возможности его компьютера позволили даже создать своеобразный фильм.
Хоппенштедт, математик, увлекшийся биологией, прогнал разностное уравнение через свой компьютер модели «Control Data 600» сотни миллионов раз и получил на мониторе изображения для каждого из тысяч различных значений параметра. В результате выявились разветвления, затем хаос, а потом, внутри последнего, небольшие упорядоченные клинья, мимолетные проблески периодичности, где нестабильность казалась лишь преходящей. Ученому, узревшему созданные им самим картины, на миг показалось, что он летит на крыльях над неведомой землей: вот изображение совсем устойчиво, а через мгновение уже наполняется непредсказуемым буйством, бесконечно изумляя своего создателя.
Мэй познакомился с результатом этой работы. Он стал также собирать образчики изображений, полученных представителями других областей: генетиками, экономистами, специалистами по динамике жидкостей. Этот провозвестник хаоса обладал двумя преимуществами перед чистыми математиками. Во- первых, Мэй считал, что простые уравнения не могут абсолютно точно воспроизводить реальность, а являются лишь ее образами, метафорами. Во-вторых, обнаружение хаоса лило воду на его мельницу, возбуждая дебаты.
Рис. 3.3. Набросок разветвленной диаграммы. Такой она представилась Мэю, прежде чем компьютер раскрыл ее глубинную структуру.
Биология популяций вообще долгое время оставалась ареной ожесточенных споров. К примеру, отношения между экологами и молекулярными биологами были весьма натянутыми, так как последние считали свое направление
Как представлял себе Мэй, в 70-х годах особо жаркие страсти кипели вокруг вопроса о природе изменений в популяциях. Экологи разделились на два лагеря. Представители первого считали, что мир упорядочен, а следовательно, популяции регулируемы и устойчивы, пусть и с некоторыми исключениями. Специалисты второго лагеря интерпретировали реальные явления прямо противоположным образом: в популяциях, хоть и не во всех, наблюдаются беспорядочные колебания. Не удивительно, что мнения разделились и по вопросу применения сложных математических вычислений к неупорядоченным биологическим объектам. Верившие в устойчивость популяций доказывали, что последние должны регулироваться некими детерминистскими механизмами. Сторонники другой точки зрения полагали, что популяции подвержены колебаниям при воздействии особых факторов среды, устраняющих любой возможный детерминистский сигнал. Выдвигались следующие альтернативы: либо детерминистская математика служит источником стабильности, либо случайные внешние помехи генерируют неупорядоченность.
Пока шли эти оживленные дискуссии, хаос вновь ошеломил ученых: простые детерминистские модели обладали способностью порождать нечто, весьма напоминавшее беспорядочное поведение, которое, впрочем, обладало утонченной структурой, но все же любой ее фрагмент казался неразличимым на фоне постороннего шума. Такое открытие не могло не повлиять на самую сущность споров.
Чем дольше Мэй рассматривал биологические системы сквозь призму простых хаотичных моделей, тем больше он видел моментов, противоречащих общепринятым представлениям. Например, эпидемиологи хорошо знают, что массовые вспышки заболеваний появляются, как правило, с определенной цикличностью — регулярно или иррегулярно. Корь, полиомиелит, краснуха идут в наступление и отступают периодически. Мэй осознал, что колебания могли воспроизводиться нелинейной моделью, и заинтересовался тем, что случится, если система получит внезапный толчок — помеху, вроде массовой вакцинации. Казалось бы, процесс должен плавно изменяться в желаемом направлении. На самом деле, как обнаружил Мэй, начнутся весьма ощутимые колебания. Даже если жестко свести на нет долгосрочную тенденцию, путь к новому равновесию будет прерываться поразительными подъемами. В реальности врачи наблюдали колебания, подобные тем, что смоделировал Мэй. Об этом свидетельствовали фактические данные, например итоги реализации программы по искоренению краснухи в Великобритании. И все же любой служащий системы здравоохранения, услышав о кратковременной вспышке краснухи или гонореи, приписывал ее прежде всего плохо проведенной вакцинации.
За несколько лет изучение хаоса дало сильный толчок развитию теоретической биологии, объединив биологов и физиков в научные коллективы, о которых совсем недавно еще никто и не помышлял. Экологи и эпидемиологи раскопали данные предыдущих лет, которые прежде отбрасывали, считая непригодными для исследований. Черты детерминистского хаоса были обнаружены в эпидемии кори в Нью-Йорке, а также в отслеженных по наблюдениям охотников колебаниях численности популяций канадской рыси в течение двухсот лет. Молекулярные биологи начали рассматривать белки как движущиеся системы. Изменился взгляд физиологов на органы, которые представлялись теперь ученым не застывшими структурами, но объектами, совершающими регулярные и иррегулярные колебания.
Во всех областях знаний профессионалы узрели сложное поведение систем и спорили о нем — Мэй знал это наверняка. Однако специалисты каждой области считали обнаруженный ими тип беспорядочности специфичным, что повергало исследователя просто в отчаяние. А что случилось бы, если бы очевидная случайность исходила от простых моделей? Что, если
Задавшись вопросом, сколько же ученых и в каких еще областях обратили на это внимание, он в 1976 г. начал писать работу, которую считал действительно переломной, — обзорную статью в журнал «Нейчур». Мэй доказывал, что, если бы каждому студенту позволили поэкспериментировать с логистическим разностным уравнением с помощью карманного калькулятора, дела обстояли бы гораздо лучше. Простой расчет, приведенный им в конце публикации, бросал вызов искаженному восприятию возможностей природы, проистекающему из стандартного естественно-научного образования. Он призван был полностью изменить подход к научному исследованию, что бы ни было предметом изучения — экономические циклы или распространение слухов.
Мэй заявлял, что хаос необходимо преподавать. По его мнению, наступило время признать, что принятые повсеместно методы подготовки ученых навязывают им ложные представления о мире. Неважно, насколько далеко продвинется традиционная математика с ее преобразованиями Фурье, ортогональными