математики, эколог будет рассуждать примерно так: «Мы имеем уравнение. Вот переменная, являющаяся коэффициентом воспроизводства. Вот другая — коэффициент естественной смертности. Третья переменная служит коэффициентом смертности, обусловленной внешними причинами, в том числе голодом и нападением хищников. И вот, смотрите: популяция будет расти с такой-то скоростью, пока не достигнет такого-то уровня равновесия».

Но как найти подобную функцию? Могут подойти многие уравнения. Простейшей модификацией, пожалуй, окажется линейная зависимость, предложенная Мальтусом: хс = (1- x). Как и выше, величина r является коэффициентом роста, который можно увеличить или уменьшить. Новый член (1-x) удерживает рост в определенных границах, т. е. когда х возрастает, 1-x уменьшается[3]. Имея калькулятор, можно задать начальное значение, выбрать коэффициент роста и вычислить результат — численность популяции в следующем году.

Рис. 3.1. Популяция достигает равновесия после роста, чрезмерного увеличения численности особей и ее снижения.

К 50-м годам экологи уже использовали варианты рассмотренного выше уравнения, известного как логистическое разностное уравнение. В частности, В.-Е. Рикер из Австралии применил его для оценки рыбных промыслов. Ученые поняли, что коэффициент роста r является важной характеристикой модели. В физических системах, откуда, собственно, и позаимствовала экология подобные уравнения, данный параметр отвечал количеству теплоты, или силе трения, или другим физическим величинам, порождаемым хаотическим движением, — словом, количеству нелинейности. Применительно к рыбным угодьям он должен соответствовать плодовитости рыб, колебанию численности популяции в обоих направлениях (что именуется биотическим потенциалом). Вопрос заключался в том, каков механизм влияния различных факторов на дальнейшую судьбу изменяющейся популяции. Очевидно, что более низкое значение параметра повлечет за собой стабилизацию числа особей на относительно невысоком уровне, а то, что повыше, приведет к стабилизации на более высоком уровне. Это справедливо для многих величин, но отнюдь не для всех. Некоторые исследователи, и Рикер в их числе, применяли величины, имевшие достаточно высокие значения, и, осуществляя опыты, разглядели хаос.

Кажется удивительным, что поведение ряда показателей, поддающихся измерению и исчислению, обнаруживает определенные странности, досадные для любого, кто работает с ручной вычислительной машинкой. Конечно, бесконтрольный рост чисел еще не наблюдается, но нет и стабильности. Впрочем, ни один из ученых 60-х годов не был склонен (а может, не хватало упорства) продолжать вычисления до тех пор, пока искомая упорядоченность не будет найдена. Так или иначе, колебания численности популяции дали экологам повод предположить, что происходят они около некоего скрытого уровня равновесия. Считая последнее весьма важным, экологи ни в коем случае не предполагали, что этого уровня может не быть.

Справочники и учебники, посвященные логистическим уравнениям и их более сложным вариантам, не содержали, как правило, никаких указаний на проявления неупорядоченности. Дж. Мэйнард Смит в своей классической работе «Математические идеи в биологии», вышедшей в 1968 г., так определил возможные перспективы развития: численность популяции часто является величиной постоянной, или же отклонения случаются «весьма регулярно» в области предполагаемой точки равновесия. Автор не был столь наивен, чтобы допускать отсутствие хаотичного элемента в жизни реальных популяций. Он лишь полагал, что с описанными им математическими моделями хаос не имеет ничего общего. Будь это иначе, биологи избегали бы пользоваться подобными моделями. Если модель не оправдывала ожиданий своего создателя относительно реального положения дел в популяции, расхождение всегда можно было объяснить тем, что какая-то величина (возрастной состав популяции, специфика ареала обитания или географической среды, соотношение полов) осталась неучтенной.

Чаще всего неупорядоченность числового ряда ученые списывали на несовершенство счетной машинки. Интерес представляли стабильные решения, устойчивость казалась лучшей наградой. В конце концов, процедура подбора нужных уравнений и их решения требовала известных усилий. Никто не хотел впустую тратить время на ошибочные изыскания, не выявлявшие стойкой тенденции, и ни один опытный исследователь не забывал, что его уравнения не более чем примитивная версия реальных событий. На упрощения шли ради моделирования упорядоченности. Стоило ли преодолевать трудности, чтобы узреть хаос?

Говорят, что идеи Лоренца по-настоящему открыл Джеймс Йорк и он же дал науке о хаосе ее нынешнее имя. Вторая часть этого утверждения справедлива.

Йорк был математиком, но предпочитал считаться философом, хотя это и таило в себе некоторую опасность. Остроумный и велеречивый, с всклокоченной шевелюрой, он обожал кроткого, но беспокойного Стива Смэйла. Подобно многим, Йорк признавал, что понять Смэйла непросто. Однако в отличие от большинства коллег он знал, почему же так трудно постичь логику Стива. Двадцати двух лет от роду Йорк поступил в Физико-технологический институт при Мэрилендском университете, который сам же позже и возглавил. Он относился к числу тех математиков, которые во что бы то ни стало стремятся претворить свои идеи в жизнь, чтобы они принесли пользу. Написанный им доклад о распространении гонореи убедил федеральные власти в необходимости изменения стратегии контроля за заболеваемостью. Во время топливного кризиса 70-х годов он выступил в суде штата Мэриленд с весьма корректными (но не слишком убедительными) аргументами в пользу того, что ограничение отпуска бензина лишь усугубит ситуацию. Когда в эпоху антивоенных выступлений правительство опубликовало снятые с самолета-шпиона фотографии — редкие группки людей вокруг памятника Вашингтону в разгар акции протеста, — Йорк проанализировал фотографию и по форме тени, отбрасываемой изваянием, установил, что в действительности снимок был сделан на полчаса позже, когда митингующие уже расходились.

Работая в институте, Йорк наслаждался возможностью трудиться над вопросами, выходящими за привычные рамки, и постоянно консультироваться со множеством представителей других дисциплин. Как- то одному из них, посвятившему себя изучению динамики жидкостей, попалась на глаза статья Лоренца «Детерминистский непериодичный поток», написанная в 1963 г. С тех пор минуло девять лет. Будучи очарован работой Лоренца, физик вручал копии статьи всем, до кого удавалось дотянуться. В числе прочих копию получил и Йорк.

Статья обладала необъяснимой магией. Это было то самое, что Йорк бессознательно, но давно искал. Математик мог бы назвать статью шокирующей; хаотическая система не вписывалась в весьма оптимистичную первоначальную классификацию Смэйла. Йорк разглядел в работе Лоренца не только математику, но и живую физическую модель — картину движущейся жидкости — и сразу же понял: нужно, чтобы физики увидели и оценили ее. Его кумир Смэйл повернул математику лицом к физическим проблемам, хотя язык математики не годился еще для свободного общения, и Йорк хорошо это понимал. Вот если бы все известные науки, потеснившись, приняли в свои ряды новобранца — дисциплину, удачно совместившую в себе черты физики и математики… Но увы, хотя работа Смэйла несколько сократила пропасть между двумя областями знания, математики и физики говорили еще на разных языках. Как заметил однажды физик Марри Гелл-Ман, «сотрудникам факультета знакомы личности, которые среди математиков выставляют себя знающими физиками, а среди физиков — опытными математиками. Совсем неплохо, но нам такого не надо». Образ мысли и действий представителей двух профессий был слишком различен: математики доказывали теоремы путем логических рассуждений, физики — исключительно путем экспериментов. Различны были и объекты исследования.

Смэйла вполне мог удовлетворить следующий пример: выбрав число, например дробь больше нуля, но меньше единицы, удвоить его, а затем, отбросив целую часть, находящуюся слева от запятой, повторить процедуру. Поскольку большинство чисел иррациональны, результатом действий станет последовательность случайных чисел. Физик не увидит здесь ничего, кроме игры ума, очередной математической причуды, совершенно бессмысленной, слишком простой и чересчур абстрактной, чтобы из

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату