что потенциал такой несложной задачи в генерировании порядка и беспорядка неистощим. На самом же деле программа Мэя стала лишь началом. Он рассмотрел сотни значений параметра, задействовав обратную связь и наблюдая, где именно ряд чисел придет к фиксированному значению и случится ли подобное вообще. Он сосредоточивал все больше внимания на рубеже перехода от стабильного состояния к колебательному. Используя уравнение xc = rx (1-x), Мэй увеличивал значение параметра так медленно, как только мог. Если это значение составляло 2,7, численность популяции равнялась 0,6292. По мере увеличения параметра конечный результат так же медленно увеличивался, образуя на графике кривую, плавно поднимавшуюся слева направо.

Неожиданно, когда значение параметра превысило 3, линия раздвоилась. Численность воображаемой стаи рыб в предыдущий и последующий годы колебалась между двумя точками, не являясь единой величиной. Начиная с меньшего числа, она возрастала, а затем беспорядочно варьировалась до появления устойчивых отклонений в ту и другую стороны. Рост «холмика» на графике — небольшое увеличение параметра — вновь расщеплял колебания, генерируя ряд чисел, приходивших, в конечном счете, к четырем различным значениям, каждое из которых повторялось с регулярностью раз в четыре года[4]. Теперь компьютерная популяция Мэя увеличивалась и убывала в устойчивом четырехлетнем режиме. Длительность цикла вновь выросла в два раза — сначала с одного года до двух, затем — до четырех. И вновь подобное «круговое» поведение в итоге обнаружило стабильность: какова бы ни была начальная численность популяции, изменения ее укладывались в рамки четырехлетнего цикла.

Рис. 3.2. Удвоение периодов и хаос. Вместо применения отдельных диаграмм для демонстрации изменений в популяциях с различной степенью воспроизводства Роберт Мэй, наряду с другими учеными, использовал так называемую разветвленную диаграмму, чтобы соединить все данные в одном изображении. На диаграмме показано, каким образом изменение одного параметра, в данном случае — способности живущей в естественных условиях популяции к снижению и увеличению числа составляющих ее особей, повлияет на поведение рассматриваемой простой системы в целом. Значения параметра откладывались слева направо по горизонтальной оси; значения конечной численности популяции — по вертикальной. В известном смысле рост значения параметра знаменует перегрузку системы, увеличение в ней нелинейного элемента. Когда это значение невелико (слева) , популяция угасает. По мере его роста (в центре) популяция достигает равновесия. Затем, при дальнейшем увеличении параметра, равновесное состояние расщепляется на две ветви, подобно тому как в процессе конвекции дальнейшее нагревание жидкости делает ее нестабильной. Начинаются колебания численности популяции между двумя различными уровнями. Расщепления, или разветвления, происходят все быстрее и быстрее. Далее система становится хаотичной (справа), и численность особей может приобретать бесконечное множество значений.

Построение графика — единственное, что позволяет обнаружить в указанных результатах хоть какой-то смысл и представить их наглядно. Мэй сделал предварительный набросок, чтобы охватить все типы поведения системы при различных параметрах. Для значений параметра, возраставших слева направо, была выбрана горизонтальная ось, для численности популяции отводилась вертикальная. Каждое из значений параметра было представлено точкой, обозначавшей конечный результат после достижения системой равновесия. Слева, там, где значения еще были небольшими, результат являл собой лишь точку. Таким образом, изменения параметра отобразились в виде линии, поднимавшейся слева направо. Когда значение параметра миновало первый критический рубеж, Мэю пришлось вычертить кривую для двух популяций, поскольку линия раздвоилась, образовав искривленную букву Y или подобие вил. Такое расщепление соответствовало переходу популяции от однолетнего цикла к двухлетнему.

По мере дальнейшего роста значения параметра количество точек удваивалось вновь и вновь, что просто ошеломляло ученого, поскольку столь сложное поведение таило в себе обманчивую устойчивость. Мэй назвал наблюдаемый феномен «змеей в джунглях математики». Раздвоения на графике изображались разветвлениями основной линии, и каждое из этих разветвлений означало, что повторяющийся образец далее вновь разделится на части. Популяция, ранее характеризовавшаяся стабильностью, колебалась между двумя различными уровнями каждый второй год. Популяция, менявшаяся в течение двухлетнего цикла, изменялась теперь в течение третьего и четвертого годов, переходя, таким образом, к четырехлетнему периоду.

Подобные разветвления наблюдались на графике все чаще и чаще — 4, 8, 16, 32… — и вдруг внезапно прекратились. После определенной точки аккумуляции периодичность уступала место хаосу, колебаниям, которые никогда не затухали, и поэтому целые зоны на графике были полностью затушеваны. Наблюдая за популяцией животных, описанной этим простейшим уравнением, можно посчитать происходящие год за годом перемены совершенно случайными, привнесенными извне. Тем не менее в самой гуще подобной беспорядочности вновь появляются стабильные циклы. Так, с возрастанием параметра неожиданно обозначается просвет с правильным, хотя и странным периодом, вроде 3 или 7. Модель меняющейся популяции повторяла саму себя в течение трехлетнего или семилетнего цикла. Затем снова, в более высоком темпе, начинались разветвления, которые удваивали период, быстро минуя новые циклы (3, 6, 12… или 7, 14, 28…) и вновь обрываясь с рождением нового хаоса.

Первоначально Мэй не разглядел все изображение, однако те его фрагменты, которые он смог просчитать, представлялись ему весьма неустойчивыми. В системе реального мира наблюдатель видел лишь вертикальную часть, соответствующую каждый раз лишь одному параметру, а значит, рассматривал лишь один из типов поведения — вероятно, стабильное состояние, может быть, семилетний цикл или видимую невооруженным глазом беспорядочность. И совсем невозможно было догадаться, что одна и та же система при небольшом изменении одного из параметров могла обнаружить совершенно не похожие друг на друга типы поведения.

Джеймс Йорк с математической точностью проанализировал описанные явления в упомянутой выше работе, доказав, что в любой одномерной системе происходит следующее: если появляется регулярный цикл с тремя волнами, то в дальнейшем система начнет демонстрировать как правильные циклы любой другой продолжительности, так и полностью хаотичные. Это открытие подействовало на физиков вроде Фримена Дайсона словно электрошок, ибо противоречило интуиции. Им казалось вполне тривиальной задачей построение системы, которая повторяет саму себя в трехволновых колебаниях без всякого проявления хаоса. Йорк доказал, что это невозможно.

Хотя подобное предположение выглядело весьма смелым, Йорк посчитал, что общественный резонанс, вызванный его работой, перевесит ее математическое содержание, и отчасти оказался прав. Несколько лет спустя он прибыл на международную конференцию в Восточный Берлин. По окончании докладов Йорк решил прокатиться по реке Шпрее. Во время прогулки с ним попытался заговорить какой-то русский. Обратившись за помощью к знакомому поляку, Йорк понял, что русский математик достиг идентичного результата. Собеседник Йорка отказался вдаваться в детали, пообещав лишь выслать свою статью, которая и пришла через четыре месяца. Как выяснилось, А. Н. Сарковский несколько опередил Йорка. Однако Йорк достиг большего, чем просто математический результат: он продемонстрировал физикам, что хаос вездесущ, стабилен и структурирован. Он дал повод поверить в то, что сложные системы, традиционно сводившиеся к трудным для решения дифференциальным уравнениям, могли быть описаны с помощью довольно простых графиков.

Эта встреча двух поглощенных своими идеями и оживленно жестикулирующих математиков стала знаком того, что занавес между советской и западной наукой все еще существует. Частично из-за языкового барьера, частично из-за ограничений на передвижение по Советскому Союзу западные ученые нередко повторяли результаты, уже опубликованные в советской научной литературе. Зарождение новой науки в США и Европе вдохновило многих специалистов в Советском Союзе на изучение хаоса, и исследования шли параллельно. С другой стороны, ученые из СССР с удивлением выяснили, что львиная доля новых научных веяний для них вовсе не нова. Советские математики и физики уже давно и упорно пытались постичь

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату