Таким образом, в заметке 1934 г. Бронштейн сбалансированно представил с/-ограничения на измеримость электромагнитного поля. Поэтому не удивительно, что год спустя он обратился к анализу измеримости гравитационного поля.
b) cGh-измеримость и квантовые границы ОТО. Проследим за этим анализом внимательно, вместе с Бронштейном «немного мысленно поэкспериментируем!» (так называется параграф в [30]). Напомним сначала, что в приближении слабого гравитационного поля метрический тензор gik представляется в виде
где 8ik — плоская метрика Минковского, а все величины hik«1. В этом случае, как показал еще Эйнштейн в 1916 г., общие нелинейные уравнения ОТО сводятся к линейным (с точностью до членов высшего порядка малости по hik):
где Tik— тензор энергии-импульса, а к=16л?т/с2.
Сконструировав подходящий для этого случая гамильтониан гравитационного поля, Бронштейн выписывает перестановочные соотношения в соответствии с общей схемой квантования полей Гейзенберга и Паули 1929 г.
Однако, прежде чем перейти к построению квантовой картины слабого гравитационного поля, Бронштейн обращается к вопросу, касающемуся синтеза квантовых и гравитационных представлений в общем случае, а не только в случае слабого поля. После краткого обсуждения перестановочных соотношений он пишет:
«Можно было бы думать, что здесь, как и в квантовой электродинамике, получается вполне последовательная квантово-механическая схема, содержащая величины, которые, правда, не всегда могут быть измеряемы с произвольно задаваемой точностью одновременно, но каждая из них может быть сколь угодно точно измерена в отдельности. ...Чтобы понять природу тех физических условий, которые могут сделать это утверждение недействительным, рассмотрим в качестве переходит в уравнение
простейшего примера измерение величины [00, 1], т. е.
здесь и далее х=х , Г100 — современное обозначение символа Кристоффеля [00,1].
Для измерения значения Г100, среднего по объему V и за промежуток времени Т (а согласно Бору— Розенфельду в квантовой теории поля следует говорить только о такого рода измерениях), надо измерить компоненту рх импульса пробного тела, имеющего объем V, в начале и в конце промежутка времени Т, поскольку в рассматриваемом приближении
где р — плотность пробного тела. Поэтому если измерение импульса имеет неопределенность Арх, то неопределенность
Неопределенность импульса рх состоит из двух слагаемых: обычного квантово-механического
(где Ах — неопределенность в координате) и «члена, связанного с полем тяготения, создаваемого самим измерительным прибором вследствие отдачи при измерении импульса». Второе слагаемое Бронштейн оценивает следующим образом. Уравнение (1) с учетом используемого приближения дает
Если на отдельное измерение импульса затрачивается время At (при этом должно быть At<<T), то неопреде
ленность величины h01 , связанная с неопределенностью скорости отдачи vx~Ax/At, имеет порядок
и согласно (2) неопределенность напряженности гравитационного поля
Соответствующая неопределенность импульса, связанная с собственным гравитационным полем пробного тела, имеет тогда порядок
Тогда
(6)
Продолжительность измерения импульса At ограничивается снизу двумя условиями. Во-первых, должно быть At>Ax/c, чтобы скорость отдачи, вызванной изменением импульса, была меньше скорости света. Отсюда и из (5) следует
Во-вторых, из самого смысла измерения поля в объеме V следует, что величина Ax должна быть меньше размеров пробного тела: Ax<V13. Учитывая (5), получим
Получив эти две нижние границы для At, Бронштейн отмечает, что отношение первой из них ко второй
«зависит от массы пробного тела, будучи совершенно ничтожной величиной в случае электрона и становясь величиной порядка 1 в случае пылинки, весящей сотую долю миллиграмма». Для неопределенности AT1j00 получаются соответственно две границы
Поскольку, как видно отсюда, для возможно более точного измерения Г1,00 в данном объеме V следует применять пробные тела возможно большей массы (плотности), то существенной становится только первая граница.
Бронштейн указывает, что предыдущие рассуждения аналогичны соответствующим рассуждениям в квантовой электродинамике (при этом ссылается на свою заметку 1934 г.) и пишет: «Но на этом месте приходится принять во внимание обстоятельство, из которого обнаруживается принципиальное различие между квантовой электродинамикой и квантовой теорией гравитационного поля. Различие это заключается в том, что в формальной квантовой электродинамике, не учитывающей структуры элементарного заряда, нет никаких принципиальных причин, ограничивающих увеличение плотности р. При достаточно большой плотности заряда пробного тела точность измерения компонент электрического поля может быть сделана какой угодно. В природе, вероятно, существуют принципиальные ограничения плотности электрического заряда (не больше одного элементарного заряда на объем с линейными размерами порядка классического электронного радиуса), однако эти ограничения не учитываются формальной квантовой электродинамикой... Не то — в квантовой теории гравитационного поля: она должна считаться с ограничением, вытекающим из того, что гравитационный радиус пробного тела (KpV) не может превосходить его действительных линейных размеров
Если это учесть, то (10) дает «абсолютный минимум неопределенности»
Конечно, этот «абсолютный предел вычислен очень грубо, потому что при достаточно большой массе измерительного прибора начнут, вероятно, играть роль отступления от принципа суперпозиции...»; однако Бронштейн считает, что «аналогичный результат сохранится и в более точной теории, так как он нисколько сам по себе не вытекает из принципа суперпозиции, а соответствует лишь тому факту, что в общей теории относительности не может существовать тел сколь угодно большой массы при заданном объеме. В электродинамике нет никакой аналогии этому факту... вот почему квантовая электродинамика возможна без внутренних противоречий». Указав, что в теории гравитации «это внутреннее противоречие никак не может быть обойдено», Бронштейн пришел к выводу: