наличие только двух. Сейчас объясню, в чем тут дело. Представь себе мир глазами половой клетки. Вообрази популяцию без полового разделения, где каждая половая клетка способна слиться с любой другой. В такой популяции найти партнера проще простого. Однако есть и проблема. При отсутствии полов невозможно предотвратить близкородственные скрещивания, в этом случае легко могут соединиться клетки, произошедшие от одного и того же родителя.
Теперь представь себе популяцию, состоящую из множества полов. Чем их число больше, тем легче найти подходящего партнера для размножения и в то же время проще избежать инцеста: родственные половые клетки получают минимальные шансы слиться воедино. (В случае со слизевиками для каждой из клеток подойдет лишь одна восьмая из ее товарок) Другими словами, большое число полов упрощает поиск партнера, в то же время помогая избежать инбридинга.
Как же перейти от отсутствия полов к сотням? Первый шаг — переход от нуля к двум — действительно может быть сложным, и объяснения этого процесса весьма противоречивы. (Но, поскольку мы знаем, что подобное происходило неоднократно, переход на самом деле не должен быть таким уж сложным.) А после того как барьер преодолен, обзавестись более чем двумя полами не просто, а очень просто. Подумайте: если некий индивидуум начнет вырабатывать половые клетки третьего пола, они будут подходящими для обоих «традиционных» полов (хотя и не подойдут для собственного). Поначалу новый пол имеет преимущество, поскольку его представители могут спариваться с большим числом партнеров, чем другие. Гены нового пола начнут распространяться, пока в популяции не установится равенство, при котором все три пола будут представлены в равной пропорции. Если вдруг объявятся представители четвертого пола, процесс повторится. Поскольку поначалу представители нового пола всегда имеют преимущество, число полов будет постепенно расти.
И тем не менее, как ты правильно заметил, у большинства изогамных организмов только два пола — чудовищно неудобно с точки зрения поиска партнера. Однако сформулируем это иначе: появление большого числа полов в результате эволюции не так сложно и обеспечивает заметные преимущества; тем не менее большинство изогамных организмов почему-то обходится лишь двумя (хотя и не мужским и женским). Это заставляет предположить, что здесь действуют какие-то другие силы строго ограничивающие число полов у изогамных видов. Что же это за силы? И почему они не повлияли на слизевиков?
Никто не знает доподлинно, каков ограничивающий фактор. Наиболее вероятно, что это связано с необходимостью контролировать случайные генетические элементы в цитоплазме. Дело в том, что, помимо обычных генов, находящихся в ядрах клеток большинство организмов обладают и другими генетическими элементами — к примеру, митохондриями или хлоропластами (Хлоропласты имеются в клетках растений и зеленых водорослей и занимаются переработкой солнечной энергии. Митохондры обнаруживаются практически во всех клетках, за исключением бактерий, и отвечают за метаболизм углеродных соединений.) Эти элементы содержатся в клеточной цитоплазме, иногда в огромных количествах. Их считают остатками бактерий бывших когда-то самостоятельными организмами. Когда-то в далекой древности, эти бактерии поселились в примитивных клетках, предоставляя им энергию за возможность пользоваться убежищем. Со временем они потеряли способность к самостоятельному существованию. У них сохранилось лишь несколько генов — так называемый остаточный геном. Однако, как вы понимаете, остатки тоже могут вызвать проблемы.
Неприятности, скорее всего, возникнут, если митохондрии и хлоропласты будут наследоваться от обоих родителей. Так митохондрии (или другие подобные образования) могут конкурировать друг с другом каким-нибудь вредным для организма способом. К примеру, митохондрии от одного из родителей могут попытаться изгнать своих конкурентов из половых клеток, а в результате и те и другие окажутся менее эффективными в своем главном деле — метаболизме. Самый простой способ избежать этого — обеспечить такой порядок вещей, при котором митохондрии (и хлоропласты, у кого они есть) наследуются только от одного из родителей.
Почему число полов при этом должно быть ограничено двумя? Суть в том, что, поскольку контроль над наследованием этих элементов чрезвычайно важен, самый простой способ их контролировать — сделать так, чтобы один из полов всегда передавал их потомкам, а другой никогда не делал этого. У целого ряда изогамных организмов есть механизм, отвечающий за то, чтобы эти элементы всегда передавались лишь от одного из родителей. К примеру, зеленые водоросли
Есть еще одно косвенное доказательство того, что число полов ограничивается именно необходимостью контроля хлоропластов и митохондрий. Существует две группы организмов — грибы и одноклеточные инфузории, — которые размножаются не с помощью половых клеток, а путем обмена половинками клеточных ядер. (Эта система обладает удивительной способностью делать вас генетически идентичным с абсолютно посторонним существом — вас двое, и вы одинаковы, как однояйцовые близнецы.) Важно, что при подобном способе не происходит слияния цитоплазмы и этим видам не приходится регулировать наследование митохондрий. Не удивительно, что число полов у этих видов стремится практически к бесконечности: так, у
Итак, теперь ты понимаешь: исключительность слизевика вовсе не в избытке полов, а в том, что, имея большое их число, вы все-таки получаете цитоплазму от обоих родителей. Как у вас это получается? Быть может, ваши митохондрии лучше воспитаны, чем у других видов? Нет. Разгадка в том, что они все-таки наследуются лишь от одного из родителей. Ген matA контролирует передачу митохондрий от родителей. Существует целая иерархия вариантов: так, при слиянии клеток с вариантами генов matA12 и matA2 будут уничтожены митохондрии, полученные с matA12, а при слиянии matA12 и matAl пойдут под нож митохондрии последнего. Я понимаю, почему столь сложная система встречается так редко: попробуй заставить ее заработать. И поэтому я аплодирую слизевику, у которого это все-таки получилось.
Думаю, ты — мужчина, чье время еще не пришло. Вместо того чтобы стать отцом великого племени зеленых морских водорослей ты можешь умереть, так и не оставив потомства. Почему? Дело в том, что твой вид изогамен, а ты — просто мутант, производящий половые клетки меньшего размера, чем у остальных. Когда твоя клетка соединится с другой, традиционной для вашего вида, получившаяся клетка, называемая зиготой, будет меньше обычного. Это почти наверняка уменьшит ее шансы на выживание.
Тебе просто не повезло. Виды, включающие мужской и женский пол, вновь и вновь эволюционировали из изогамных видов. И хотя изогамия уже давно вышла из моды среди растений и животных, их дальние предки все еще остаются изогамными. В чем же кроется секрет перехода двуполого изогамного вида к делению на мужчин и женщин? Признаюсь, на эту тему существует много догадок, однако определенного ответа до сих пор нет.
Главная проблема в понимании эволюции мужского и женского пола — обнаружить силы, которые благоприятствуют индивидам, производящим либо большие, либо маленькие половые клетки, а не среднего размера. На первый взгляд, нетрудно понять, что выигрывает организм с мелкими половыми клетками: их можно производить в больших количествах, а тот, кто вырабатывает больше половых клеток, чем соперники, имеет больше шансов слить свои клетки с другими. Трудность, однако, в том, что, как ты уже почувствовал на собственной шкуре, производство большого числа мелких половых клеток не имеет смысла, если малый размер этих клеток снижает шансы зиготы на выживание. В самом деле, если мы вполне логично предположим, что для лучшей выживаемости зигота должна быть по крайней мере не меньше той, которая образовалась после слияния двух изогамных клеток, мы поймем: вид может разделиться на мужчин