приблизиться и соединиться с ним только нуклеотид, имеющий парное, «дополняющее» основание. Это значит, что к развернутой цепи начнет присоединяться другая, недостающая цепь ДНК, причем точно такая, какая была в другой половине макромолекулы и отделилась, чтобы подобным же образом извлечь из среды то, чего ей недостает до полной молекулы ДНК. В результате этих процессов образуются две молекулы ДНК, каждая из которых имеет половину материнской молекулы, дополненную вновь синтезированной. Дочерние молекулы становятся, таким образом, точной копией материнской ДНК. При этом сохраняется и состав генетического материала.

Здесь мы должны, однако, предупредить читателя, что то, о чем он только что прочел, было всего- навсего гипотезой Уотсона и Крика о редупликации ДНК. Вы можете справедливо заметить, что правильность гипотез должна быть доказана экспериментально.

Описанную гипотезу подтвердил американский биохимик А. Корнберг, которому удалось открыть полимеразу ДНК — фермент, участвующий в процессе редупликации. Получив из клеток кишечных бактерий Escherichia coli ДНК и фермент, он соединил их в пробирке, добавив туда же смесь соответствующих нуклеотидов. Через некоторое время количество ДНК в пробирке значительно увеличилось, причем были использованы присутствующие в среде свободные Нуклеотиды. За свое открытие он получил в 1959 году Нобелевскую премию по физиологии и медицине. Эту премию разделил с ним профессор С. Очоа, открывший независимо от Корнберга фермент — полимеразу РНК, которая синтезирует рибонуклеиновую кислоту. Совсем недавно Корнберг обнаружил еще один фермент, участвующий в синтезе ДНК, и назвал его фосфатазой ДНК.

Модель редупликации молекулы ДНК. К развернутым цепочкам (вверху) присоединяются дополнительные цепочки того же состава, что и в материнской молекуле.

Гипотезу о редупликации ДНК подтвердили в 1958 году М. С. Месельсон и Ф. Сталь. Они культивировали бактерии Е. coli в жидкой питательной среде, содержащей вещества с радиоактивным азотом 15N. ДНК этих бактерий оказалась потом «меченной» радиоактивным элементом всюду, где в ее макромолекулах содержится атом азота. Затем ученые культивировали бактерии в жидкой питательной среде, содержащей нерадиоактивный азот 14N. При выращивании бактерии размножались, и можно было наблюдать, как радиоактивный азот ДНК равномерно распределялся по дочерним молекулам ДНК. В каждой последующей генерации бактерий отмечалась половинная радиоактивность ДНК по сравнению с предыдущей. Иначе говоря, при каждой редупликации ДНК радиоактивность материнской макромолекулы равномерно распределялась в двух дочерних макромолекулах, которые создавали недостающие им цепи, привлекая для этого нуклеотиды с нормальным азотом.

Жакоб и Моно обдумывают генетический код

Итак, по мнению Крика и его коллег, ДНК можно считать химическим носителем наследственности, иначе говоря, ДНК — это определяющая составная часть генов. Бидл и Тейтем уже давно сформулировали положение «один ген — один фермент», согласно которому гены определяют синтез и состав ферментов. Если ДНК действительно является генетической молекулой, она должна определять и строение того или иного фермента. Эту определяющую роль ДНК по Уотсону и Крику можно объяснить порядком распределения нуклеотидов в ее молекуле, то есть последовательностью, в которой чередуются в цепях ДНК четыре возможных нуклеотида. Но поскольку ферменты в химическом отношении являются молекулами белков, а структурными элементами последних — аминокислоты, то порядок расположения аминокислот в молекуле белка (а значит, и ферментов) будет определяться расположением нуклеотидов в молекуле ДНК, точнее — расположением нуклеотидов в цепях молекулы ДНК.

Допустим, что так оно в действительности и есть. Тогда возникает вопрос: как же все это происходит? Каким образом тройки нуклеотидов в ДНК определяют синтез белков, в том числе и ферментов?

1961 год войдет в историю не только как год начала космической эры. Он был отмечен также событием, которое приблизило нас к решению важнейшего биологического вопроса — о механизме синтеза белка. В 1961 году сотрудники Пастеровского института Ф. Жакоб и Ж. Моно опубликовали статью, в которой они попытались объяснить интересующее нас явление. Эти ученые, получившие спустя четыре года Нобелевскую премию по медицине и физиологии, предложили гипотезу, согласно которой ДНК управляет синтезом белков не непосредственно. Роль посредника выполняет особая молекула РНК, структура которой представляет собой как бы отпечаток структуры ДНК. Эта особая молекула РНК образуется при раскручивании двойной спирали молекулы ДНК так, что на развернутой цепи ДНК возникает цепь РНК с таким расположением нуклеотидов, которое соответствует расположению последних в цепи ДНК. Обозначим нуклеотиды заглавными буквами названий их органических оснований. На раскрученной спирали ДНК с нижеприведенным порядком нуклеотидов должна возникнуть цепь РНК с соответствующим «парным» и дополняющим расположением нуклеотидов, а именно цепи ДНК

(А — Г — Т) — (Т — Ц — А) — (Т — Т — Т) — (Г — А — А)

отвечает цепь РНК

(У — Ц — А) — (А — Г — У) — (А — А — А) — (Ц — У — У)

После своего образования цепь РНК отделяется от цепи ДНК и перемещается в то место клетки, где происходит синтез ферментов. РНК в приведенной нами схеме содержит четыре тройки нуклеотидов и, если исходить из гипотезы Жакоба и Моно, определяет порядок четырех аминокислот в будущей молекуле белка. Макромолекула белка требует значительно более ёмкой информации, заключенной в молекуле РНК, которая должна содержать столько троек нуклеотидов, сколько молекул аминокислот должно присоединиться к макромолекуле белка.

Поскольку генетическая информация химически «переписывается» с ДНК на молекулу РНК, которая понесет далее «послание», или информацию о синтезе молекулы белка, мы назовем эту РНК, переносчика информации, информационной РНК, или иРНК[22].

Естественно, что подобное представление, будучи лишь гипотетическим, требовало экспериментального подтверждения. Проверка его началась в США в том же 1961 году. Американский биохимик М. Ниренберг из Линговского национального института сердца поставил смелый эксперимент. Специальными методами он разрушил клетки бактерий Escherichia coli и получил бесклеточную массу, способную синтезировать белки. Затем заменил предполагаемую Жакобом и Моно иРНК искусственной, которая на языке химиков называлась полиуридиловой кислотой (сокращенно поли-У) и содержала вместо четырех типов нуклеотидов, обычных для природной иРНК (А, У, Ц, Г), только один — уридиловую кислоту (У). Поли-У образует цепь РНК в таком виде:… У — У — У — У — У — У —… Внесение поли-У в бесклеточную массу не дало каких-либо существенных результатов: из 20 различных аминокислот в состав белков включились молекулы одной-единственной аминокислоты — фенилаланина. Из этой единственной аминокислоты образовались только макромолекулы белков, или поли-фенилаланинов. В соответствии с «нуклеотидными тройками» (триплетами) и поли-У образует цепь триплетов У — У — У, являющихся «кодоном» для включения молекул фенилаланина в белки.

Вскоре после проведения этих исследований из лаборатории Ниренберга поступили новые сообщения: для образования фенилаланина необходима еще одна клеточная РНК, которая должна будет переносить иРНК. Для каждой аминокислоты клетка должна иметь особый тип такой транспортной РНК (тРНК).

Еще в 1957 году Р. Холли из Корнельского университета, опубликовал сообщение о существовании тРНК. К 1961 году уже стало известно, что в клетках существуют различные типы тРНК, которые в присутствии соответствующих ферментов соединяются с определенными аминокислотами. Предполагали, что в виде такого промежуточного соединения с тРНК аминокислоты перемещаются к месту синтеза белков. В 1965 году Холли опубликовал результаты своих многолетних исследований: установил расположение

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату