На Международном онкологическом конгрессе в мае 1970 года в Хьюстоне доктор X. Темин из Висконсинского университета сообщил об открытии фермента, способного синтезировать ДНК в присутствии РНК. И этот фермент и РНК находятся в вирусе Рауса, известном уже в течение нескольких десятилетий как возбудитель саркомы. Открытие Темина в скором времени подтвердил его соотечественник Д. Балтимор. Другой американский ученый, С. Спигелмен, сообщил в конце июня 1970 года, что тот же фермент обнаружен им в семи различных онкогенных вирусах. Летом того же года на Международном конгрессе микробиологов в Мексике Спигелмен сообщает о новом неожиданном факте. Оказывается, онкогенные вирусы содержат еще один фермент — «полимеразу ДНК», связанную с ДНК и ранее известную как «полимераза ДНК Корнберга».

Но эстафету снова перехватывает Темин, открывший третий фермент в вирусе саркомы Рауса: эндонуклеазу, «рассекающую» длинную двойную спираль ДНК на короткие отрезки. Возможно, есть и четвертый фермент — лигаза, осуществляющая соединение этих фрагментов снова в длинную макромолекулу ДНК»

В ноябре 1970 года в Париже на Международном коллоквиуме, который проводился фирмой, занимающейся производством антибиотиков, американский ученый X. Ханафуза сообщил общественности, что обе полимеразы вируса Рауса играют важную роль в превращении здоровых клеток в опухолевые. Другие участники коллоквиума сообщили, что из белых кровяных телец людей, пораженных белокровием, была выделена полимераза ДНК, связанная с РНК. Таким образом, фермент, присутствующий в онкогенных вирусах, был найден и в белых кровяных тельцах больных лейкозом. Спигелмен сообщил, что этот фермент был им обнаружен в девяти случаях лейкоза и ни разу не был найден в нормальных здоровых лейкоцитах. Это означало, что обнаружение фермента в белых кровяных тельцах могло бы служить ранним диагностическим признаком лейкоза.

Р. Галло из Национального онкологического института в Бетесде (США) получил тот же фермент из лимфоцитов трех пациентов, страдающих лимфоцитарным лейкозом. Исследовав действие некоторых соединений на этот фермент, он установил, что антибиотик рифампицин снижает активность фермента (в лабораторных условиях, в пробирке) на 50 %. А один из производных рифампицина — диметилрифампицин — полностью «блокирует» действие фермента.

Конечно, еще рано праздновать победу над лейкозом. Но одно несомненно: успехи молекулярной биологии в этом направлении могут привести к важным практическим результатам.

Та форма «состязания», которая наблюдается сейчас в среде ученых, должна была бы, как нам кажется, превратиться в сотрудничество. Прав Спигелмен, который сказал, что следовало бы больше думать о защите страдающих от белокровия детей, чем о времяпрепровождении ученых в Стокгольме после получения ими Нобелевской премии.

Таково было в общих чертах положение дел к концу 1970 года. Но наука не стоит на месте. В конце января 1971 года в Лондоне состоялся симпозиум, регулярно созываемый Международной организацией ЦИБА. На симпозиуме опять выступил Спигелмен и опять с неожиданными сообщениями.

Он доложил о результатах исследований нескольких сотен образцов клеток из различных форм раковых образований у человека; в каждом из них присутствовала полимераза ДНК, связанная с РНК. В здоровых клетках взрослых людей фермент не был найден ни в одном случае. Работы Спигелмена и его коллег доказал и, что при помощи фермента можно не только диагностировать лейкоз, но и следить за процессом лечения и выздоровления.

Второе сообщение имело еще более важное значение. Спигелмен получил этот фермент в чистом виде из РНК онкогенных вирусов, ему удалось также получить фермент и из клеток больных раком. Но эти два фермента оказались различными! Значит, фермент, найденный в раковых клетках человека, не вирусного происхождения, как считали ранее.

Однако на самую большую неожиданность Спигелмен наткнулся перед публикацией своих последних наблюдений. Стремясь исследовать некоторые другие нормальные клетки, чтобы установить, не присутствует ли все-таки в них этот загадочный фермент, он исследовал ткани человеческого плода (выкидыша). Результат был подобен разорвавшейся бомбе — клетки эмбриона содержали тот же фермент! Действительно, неожиданный поворот событий! Удивительные ферменты, которые, как полагали, проникают в тело человека с вирусными частицами и имеют какую-то связь с раком, вдруг обнаружены в зародыше человека.

Какие же выводы можно сделать из этих фактов? Конечно, мы не должны забывать, что существуют различные, очевидно специализированные, типы полимеразы ДНК. Во всяком случае, присутствие фермента в раковых клетках человека и в клетках человеческого зародыша едва ли стоит связывать с вирусами. Вполне возможно, что в наборе человеческой клетки есть и такие гены, которые несут в себе «генетическую информацию» для синтеза этого фермента. Быть может, в нем нуждается каждая клетка, которой предстоит быстрый рост и размножение, а такими клетками как раз и являются клетки плода и опухолевые клетки.

Дальнейшие предсказания Жакоба и Моно

Первое предсказание об информационных РНК оказалось справедливым. Но Жакоб и Моно высказали еще одно предположение, которое также понемногу подтверждается. Согласно изложенному представлению, структура ферментов закодирована в молекулах ДНК. Но бактериальная клетка и в синтезе ферментов должна «поступать рационально». X. Э. Умбаргер со своими сотрудниками показал, что бактерии способны прекращать синтез ферментов, необходимых для образования той или иной аминокислоты, когда ее количество достигнет определенного уровня.

Жакоба и Моно заинтересовало, однако, другое явление. Бактерии Escherichia coll обладают многими любопытными свойствами. Так, они способны использовать молочный сахар — лактозу. Но для его потребления им необходимо три фермента. Назовем их А, Б и В. Было установлено, что эти ферменты вырабатываются только тогда, когда в питательной среде находится лактоза. Если заменить ее другим видом сахара, например глюкозой, ферменты А, Б и В в клетках не образуются. Но стоит нам перенести их в среду, содержащую лактозу, и через какую-то минуту в нашем распоряжении будут все три фермента.

Регулирующее действие оперона лактозы. Регулирующий ген i определяет с помощью иРНК возникновение репрессора, который связывается с оператором о и препятствует образованию ферментов (слева). В присутствии индуктора репрессор отделяется от оператора, в результате чего становится возможным образование ферментов. Промотор р необходим, чтобы дать импульс к синтезу иРНК. управляющих образованием ферментов (справа)

Этот интересный факт Жакоб и Моно попытались объяснить существованием «репрессора». Что же такое репрессор? По представлению этих ученых, основную роль в синтезе ферментов А, Б и В играют пять взаимосвязанных генов. Первый из них, регулятор, содержит в себе «рецепт» синтеза сравнительно простого соединения — репрессора. На других участках хромосомы размещаются остальные четыре гена, функционирующие как «опероны». Один из этих генов называется оператором, остальные — структурные гены А, Б и В, в которых находятся «рецепты» изготовления ферментов А, Б и В. Их деятельность, однако, контролирует оператор, выступающий в качестве «заведующего производством». Когда оператор свободен, структурные гены могут работать; иначе говоря, на цепочках их ДНК может осуществляться синтез трех соответствующих иРНК, которые передают «рецепт» получения трех ферментов рибосомам. Если же оператор занят, структурные гены не могут работать, оперон (как целое) бездействует и ферменты не вырабатываются. Регулирование активности оператора обеспечивает молекула репрессора. Если лактозы нет в среде, репрессор присоединяется к оператору и производство трех ферментов прекращается. Как только в среде появляются первые молекулы лактозы, положение меняется. Молекулы лактозы

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату