M и параллельно включенную лампу Е1. Горение лампы свидетельствует о нормальной нагрузке, В случае короткого замыкания зелёная лампа Е1 гаснет, так как на обоих зажимах имеется одинаковый потенциал и единственным потребителем в цепи является резистор R. Вследствие большого тока, протекающего через резистор, на его выводах появляется разница потенциалов и загорается красная лампа Е2. Сопротивление резистора R рассчитывают по закону Ома. Например, напряжение на выходе блока управления равно 16 В, а допустимый максимальный ток 10 А, тогда

Rкз = U / I = 16 / 10 = 1,6 Ом.

При потреблении тока 2 А падение напряжения на резисторе составит

URкз = RкзIпотр = 1,6 • 2 = 3,2 В,

а подаваемое напряжение

Uм = U - URкз = 16 - 3,2 = 12,8 В,

что вполне допустимо.

Далее необходимо определить мощность резистора

PRкз = URкзImax = 1,6 • 10 = 16 Вт.

Резистор с такими характеристиками можно сделать из спирали электроплитки, подобрав по приборам отрезок спирали с соответствующим сопротивлением. Так как при коротком замыкании резистор сильно нагревается, его следует устанавливать на фарфоровые изоляторы на некотором расстоянии от других деталей и стенок блока управления. Не рекомендуется применять для защиты вторичных обмоток плавкие вставки, так как короткие замыкания во время наладки и работы макета могут быть довольно часто и это потребует многократной замены плавких вставок.

Для изменения полярности напряжения цепи постоянного тока можно использовать переключатель (тумблер) типа TП1-2.

В настоящее время всё большее распространение получают электронные блоки управления с импульсным регулированием, у которых выходное напряжение и частота импульсов остаются постоянными, а меняется отношение ширины импульса и скважины, что обеспечивает высокую плавность регулирования скорости движения моделей.

На рис. 88 представлена принципиальная электрическая схема электронного блока управления с выходным напряжением 12 В и отношением ширины импульса к скважине 1:4. Изменение ширины импульса получают на выходе мультивибратора, настроенного на частоту 100 Гц. Базы транзисторов VT1 и VT2 подключены через потенциометр R1 , которым осуществляется управление. С увеличением напряжения на базе одного транзистора пропорционально понижается напряжение на базе другого, Следовательно, меняется время открытия транзисторов, а это приводит к изменению ширины импульса и скважины. Транзисторы VТ3, VТ4 и VT5 работают как усилительные. Схема защиты выходного транзистора от токов короткого замыкания, построенная на транзисторах VT6 и VT7, допускает протекание через транзистор VT5 только максимального расчётного тока. При нормальной работе схемы, когда ток потребителя не превышает расчётного значения, транзистор VT6 закрыт, а транзистор VT7 открыт. В этом случае ток протекает через транзистор VT7 и резистор R10 (0,5 Ом), к которому подсоединена база транзистора VT6. При увеличении тока, вызванном превышением расчётной нагрузки или коротким замыканием, падение напряжения на резисторе R10 увеличится, транзистор VT6 откроется, а транзистор VT7 закроется, Сопротивление на переходе эмиттер-коллектор транзистора VT7 значительно возрастет, и ток пройдет через лампу Е и резистор R11, где суммарное сопротивление меньше. Горящая лампа Е будет сигнализировать о перегрузке или коротком замыкании.

Рис. 88. Принципиальная электрическая схема электронного блока управления, Характеристики и типы комплектующих изделий:

R1 — 25 ком

R2 — 680 Ом

R3, R5 — 1 кОм

R4 — 12 кОм

R5 — 12 Ом

R7 — 150 Ом/2 Вт

R8 — 100 Ом/2 Вт

R9 — 1500 Ом

R10 — 0,5 Ом/1 Вт

R11 — 330 Ом/1 Вт

R12 — 470 Ом

C1, С2 — К50-6 (1 мкФ, 30 В)

С3 — К50-6 (50 мкФ, 30 В)

С4 — К50-6 (200 мкФ, 30 В)

VD1, VD2 — КД208 А

Е — 6 В/5 мА

VT1, VT2, VT3, VT6 — КТ361Б

VT4 — КТ814А

VN5, VT7 — KT818A

S — ТП1-2

2. Автоматическое управление стрелочными переводами и сигналами

Автоматическое управление стрелочными переводами и сигналами на макетах железной дороги осуществляется при помощи электромагнитных реле соленоидного типа. Зарубежные предприятия, изготавливающие модели железных дорог, выпускают много типов различных приводов, которые, как правило, встроены в основание стрелочного перевода, светофора или семафора.

B качестве примера рассмотрим принцип работы стрелочного перевода типа P31 производства фирмы «Piko» (ГДР). Привод (рис. 89) состоит из двух катушек KC1 и KC2, внутри которых перемещается стальной сердечник 7, соединенный системой тяг и рычагов 8, 9, 10 с переводной тягой стрелочного перевода 11. На основании привода имеется шесть зажимов, обозначенных цифрами2. На зажим «Земля» подключена одна фаза переменного тока напряжением 16 В. Зажимы, обозначенные на рисунке буквами п и б, служат для управления стрелочным переводом с установкой его соответственно на прямой или боковой путь. Они подключены ко второй фазе источника питания через кнопочные переключатели SBп и SBб. Для сигнализации о положении стрелочного перевода служат зажимы оп, об и о, к которым могут быть подключены сигнальные лампы Еп и Еб на пульте управления. При включении

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату