Количество есть определенное количество или, иначе, имеет границу; притом и как непрерывная, и как дискретная величина. Различие этих видов не имеет здесь никакого ближайшего значения.
Количество, как снятое бытие для себя, уже в себе и для себя безразлично к своей границе. Но вследствие того граница или свойство быть определенным количеством еще не безразлична к нему; ибо оно содержит внутри себя одно, абсолютную определенность, как свой собственный момент, который таким образом, как положенный в его непрерывности или единице, есть ее граница, остающаяся однако одним, коим она вообще стала.{126}
Это одно есть таким образом принцип определенного количества, но как количественное одно. Тем самым оно, во-первых, есть непрерывное, единица; во-вторых, оно дискретно, оно есть сущее в себе (как в непрерывной величине) или положенное (как в дискретной величине) множество одних, которые равны между собою, обладают этою непрерывностью, имеют ту же единицу. В-третьих, это одно есть также отрицание многих одних, как простая граница, исключение своего инобытия из себя, определение себя в отличие от других определенных количеств. Тем самым одно есть ?, относящаяся к себе, ?, объемлющая и ?, исключающая другое граница.
Определенное количество, положенное вполне в этих определениях, есть число. Полное положение состоит в существовании границы, как множества, и потому в ее отличии от единицы. Число является поэтому дискретною величиною, но оно вместе с тем имеет непрерывность в единице. Поэтому оно есть определенное количество в его полной определенности, поскольку внутри его граница есть определенное множество, имеющее своим принципом одно, просто определенное. Непрерывность, в которой одно есть лишь в себе, лишь снятое — положенное, как единица, — есть форма неопределенности.
Определенное количество, лишь как таковое, ограничено вообще, его граница есть его отвлеченная, простая определенность. Но поскольку оно есть число, эта граница положена, как многообразная, в себе самой. Она содержит многие одни, составляющие ее существование, но содержит их не неопределенным образом, а в ней заключается определенность границы; граница исключает другое существование, т. е. другие многие, и объемлемые ею одни суть некоторое определенное множество, определенное число (Anzal), противоположность коему, как дискретности, как она есть в числе, есть единица, его непрерывность. Определенное число и единица суть моменты числа.
Относительно определенного числа надлежит еще ближе рассмотреть, каким образом многие одни, из которых оно состоит, заключены в границу; об определенном числе правильно говорится, что оно состоит из многих, так как одни в нем не сняты, а суть в нем, положенные лишь вместе с исключающею границею, относительно которой они безразличны. Но не такова она относительно них. При «существовании» отношение к нему границы выяснилось прежде всего так, что существование, как утвердительное, остается по сю сторону своей границы, а последняя, отрицание, находится вне, на своем краю; равным образом при многих одних перерыв их и исключение других одних является некоторым определением, падающим вне включенных одних. Но там уже выяснилось, что граница проникает существование, простирается так же далеко, как оно, и что поэтому «нечто» по своему определению ограничено, т. е. конечно. Так в количественном отношении число, например, сто, представляют так, что только сотое одно ограничивает многие таким образом, что они составляют сотню. С одной {127}стороны это справедливо; но с другой стороны из сотни одних ни одно не имеет преимущества пред другими, так как они равны; каждое есть в равной мере сотое; поэтому они все принадлежат к той границе, вследствие которой число есть сотня; оно нуждается в каждом из них для своей определенности; прочие одни не образуют, стало быть, относительно сотого одного такого существования, которое как вне, так и внутри границы было бы от нее отлично. Определенное число не есть поэтому множество против включающего ограничивающего одного, но само составляет это ограничение, которое есть определенное количество, многие образуют одно число, одну пару, один десяток, одну сотню и т. д.
Ограничивающее одно есть, стало быть, определенность против другого, отличение одного числа от другого. Но это отличение не становится качественною определенностью, а остается количественным, падает лишь в сравнивающую внешнюю рефлексию; число, как одно, возвращается в себя и безразлично к другому. Безразличие числа против другого есть его существенное определение; оно образует его определенность в себе, но вместе с тем его собственную внешность. Оно есть таким образом цифровое (numerische) одно, как абсолютно определенное, которое вместе с тем имеет форму простой непосредственности, и для которого поэтому вполне внешне отношение к другому. Как одно, число есть, далее оно имеет определенность,