определения понятия, которое имелось здесь единственно в виду, ни силам автора обозреть весь объем т. наз. приложения дифференциального и интегрального исчисления и распространить индукцию, лежащую в основе указанного ею принципа, на все задачи и их решения. Но изложенное достаточно показало, что как каждому особому способу исчисления свойственна особая определенность или особое отношение величины к его предмету, и что как этот особый способ составляет сложение, умножение, возвышение в степень и извлечение корня, исчисление логарифмов и рядов и т. п., так то же справедливо о дифференциальном и интегральном исчислении; для того, что относится к этому исчислению, всего уместнее было бы название отношения степенной функции и функции ее развития или возвышения в степень, так как оно всего ближе к пониманию природы дела. Но как действие по другим отношениям величины, напр., сложение и т. п., также вообще употребляется при этом исчислении, так к нему применяются и логарифмы, отношения окружности и ряды в особенности для того, чтобы сделать удобнее выражение при потребных действиях вывода первоначальных из производных функций.
С формою ряда дифференциальное и интегральное исчисление вообще имеет ближайший общий интерес определения тех развиваемых функций, которые в рядах именуются коэффициентами членов; но между тем как интерес этого исчисления простирается лишь на отношение первоначальной функции к ближайшему коэффициенту ряда, ряд стремится найти сумму множества членов, расположенного по порядку степеней, с коим связаны эти коэффициенты. Бесконечное, присущее бесконечному ряду, неопределенное выражение отрицания определенного количества вообще, не имеет ничего общего с утвердительным определением, присущим бесконечному этого исчисления. Равным образом бесконечно малое, как приращение, посредством которого развитие принимает форму ряда, есть лишь внешнее средство этого развитие, и его так называемой бесконечности принадлежит лишь значение не иметь никакого значения, кроме значения такого средства; ряд, поскольку он в действительности не есть то, что от него требуется, приводит к некоторой прибавке, вновь отбросить которую есть излишний труд. Этим затруднением обременен и метод Лагранжа, который вновь прибег по преиму{206} ществу к форме ряда; хотя именно в этом методе чрез то, что наименовано приложением, проявляется истинное своеобразие, так как вместо того, чтобы втеснять формы dx, dy и т. д. в самые предметы, им указываются прямо те части, коим в них самих свойственна определенность производных функций (функций развития), и тем самым оказывается, что форма ряда не есть здесь то, о чем идет дело[28].
Примечание 3-е
Еще другие формы, связанные с качественною определенностью величины
Бесконечно малое дифференциального исчисления есть в своем утвердительном смысле качественная определенность величины, о которой будет далее сказано, что она в этом исчислении рассматривается не только вообще, но на особенном отношении степенной функции к функции ее развития. Но эта качественная определенность является еще в дальнейшей, так сказ., слабейшей форме, и последняя, равно как связанное с нею употребление бесконечно малых и их смысл при таком употреблении, должны быть рассмотрены в настоящем примечании.
Исходя из вышеизложенного, мы должны в этом отношении припомнить, что различаемые степенные определения с аналитической стороны проявляются прежде всего, как формальные и совершенно однородные, что они означают числовые величины, не имеющие, как таковые, качественного различия одна от другой. Но в приложении к пространственным предметам аналитическое отношение обнаруживается вполне в своей качественной определенности, как переход от линейных к плоскостным {207}определениям, от прямолинейных к криволинейным и т. д. Далее это приложение приводит к тому, что пространственные предметы, данные по их природе в форме непрерывных величин, понимаются дискретно, — плоскость, как множество линий, линия, как множество точек и т. д. Единственный интерес такого разложения состоит в определении самых точек, на которые разлагается линия, линий, на которые разлагается плоскость и т. д., дабы от такого определения подвигаться далее аналитически, т. е. собственно арифметически; эти исходные пункты суть элементы искомых определений величины, из которых (элементов) должны быть выведены функция и уравнение для конкретного, для непрерывной величины. Для решения задач, в коих по преимуществу обнаруживается интерес к употреблению этого приема, требуется в качестве исходного элемента нечто определенное для себя самого в противоположность непрямому ходу решения, поскольку последний может начинать лишь с пределов, между которыми лежит то определенное для себя, которое служит ему целью. Результаты обоих методов совпадают, если только может быть найден закон дальнейшего процесса определения при отсутствии возможности достигнуть полного, т. е. т. наз. конечного определения. Кеплеру приписывается честь впервые придти к мысли такого обратного приема и принятие дискретного за исходный пункт. Объяснение того, как он понимает первое предложение архимедова измерения круга, выражает это очень просто. Первое предложение Архимеда состоит, как известно, в том, что круг равен прямоугольному треугольнику, один катет которого есть радиус, а другой равен длине окружности. Находя смысл этого предложения в том, что окружность круга содержит столько же частей, как точек, т. е. бесконечно много, из коих каждая может считаться основанием равнобедренного треугольника и т. д., Кеплер выражает тем самым разложение непрерывного в форму дискретного. Встречающееся здесь выражение бесконечное еще очень далеко от того определения, какое дается ему в дифференциальном исчислении. Если для таких дискретных частей найдена определенность, функция, то они должны быть далее соединены, служить элементами непрерывного. Но так как никакая сумма точек не образует линию, никакая сумма линий не образует плоскости, то точки уже изначала принимаются за линейные, а линии — за плоскостные. Умножение линий на линии представляется сначала чем-то бессмысленным, т. к. умножение вообще производится над числами, т. е. есть такое их изменение, при котором то, во что они переходят, совершенно однородно с произведением, есть изменение только величины. Напротив, то, что называется умножением линии, как таковой, на линию — т. е. ductus liniae in liniam или plani in planum, которое есть также ductus puncti in lineam — есть изменение не только величины, но последней, как качественного определения пространства, как измерения; переход линии в плоскость должен быть понимаем, как выход из себя, поскольку выход из себя точки есть линия, плоскости — полное пространство. То же самое получается, когда пред{208}ставляют себе, что движение точки образует линию и т. д.; но движение подразумевает определение времени и потому является в этом представлении лишь более случайным, внешним изменением состояния; между тем под выходом из себя должно понимать определенность понятия, качественное изменение — выражаясь арифметически, умножение — единицы (как точки и т. п.) в определенное число (линию и т. п.). При этом следует еще заметить, что при выходе из себя площади, который является как бы умножением площади на площадь, оказывается, по-видимому, различие между арифметическим и геометрическим произведением, так как выход из себя площади, как ductus plani in planum, арифметически дает умножение второго измерения на второе, т. е. произведение четырех измерений, геометрически понижаемое, однако, до трех. Насколько число с одной стороны, так как оно имеет своим принципом единицу, дает прочное определение внешнему количественному, настолько же произведение его формально; как числовое определение, 3*3, умноженное само на себя, есть 3*3*3*3; но та же величина, умноженная на себя, как определение площади, удерживается на 3*3*3, так как пространство, представляемое, как выход за себя точки, отвлеченного