double rho = 3.0; // длина

 double theta = 3.141592 / 2; // угол

 complex<double> coord = polar(rho, theta);

 cout << 'rho = ' << abs(coord) << ', theta = ' << arg(coord) << endl;

 coord += polar(4.0, 0.0);

 cout << 'rho = ' << abs(coord) << ', theta = ' << arg(coord) << endl;

}

Программа примера 11.34 выдает следующий результат.

rho = 3, theta = 1.5708

rho = 5, theta = 0.643501

Обсуждение

Существует естественная связь между полярными координатами и комплексными числами. Хотя эти понятия в какой-то мере взаимозаменяемы, использование одного и того же типа для представления разных концепций в целом нельзя считать хорошей идеей. Поскольку применение шаблона complex для представления полярных координат не является элегантным решением, я предусмотрел приведенный в примере 11.25 класс полярных координат, допускающий более естественное применение.

Пример 11.35. Класс полярных координат

#include <complex>

#include <iostream>

using namespace std;

template<class T>

struct BasicPolar {

 public typedef BasicPolar self;

 // конструкторы

 BasicPolar() : m() {} BasicPolar(const self& x) : m(x.m) {}

 BasicPolar(const T& rho, const T& theta) : m(polar(rho, theta)) {}

 // операторы присваивания

 self operator-() { return Polar(-m); }

 self& operator+=(const self& x) { m += x.m; return *this; }

 self& operator-=(const self& x) { m -= x.m; return *this; }

 self& operator*=(const self& x) { m *= x.m; return *this; }

 self& operator/=(const self& x) { m /= x.m; return *this; }

 operator complex<T>() const { return m; }

 // открытые функции-члены

 T rho() const { return abs(m); }

 T theta() const { return arg(m); }

 // бинарные операции

 friend self operator+(self x, const self& y) { return x += y; }

 friend self operator-(self x, const self& y) { return x -= y; }

 friend self operator*(self x, const self& y) { return x *= y; }

 friend self operator/(self x, const self& y) { return x /= y; }

 // операторы сравнения

 friend bool operator==(const self& x, const self& y) { return x.m == y.m; }

 friend bool operator!=(const self& x, const self& y) { return x.m ! = y.m; }

private:

 complex<T> m;

};

typedef BasicPolar<double> Polar;

int main() {

 double rho = 3.0; // длина

 double theta = 3.141592 / 2; // угол

 Polar coord(rho, theta);

 cout << 'rho = ' << coord.rho() << ', theta = ' << coord.theta() << endl;

 coord += Polar(4.0, 0.0);

 cout << 'rho = ' << coord.rho() << ', theta = ' << coord.theta() << endl;

 system('pause');

}

В примере 11.35 с помощью typedef я определил тип Polar как специализацию шаблона BasicPolar. Так удобно определять используемый по умолчанию тип, однако вы можете при необходимости специализировать шаблон BasicPolar другим числовым типом. Такой подход используется в стандартной библиотеке в отношении классе string, который является специализацией шаблона basic_string.

11.19. Выполнение операций с битовыми наборами

Проблема

Требуется реализовать основные арифметические операции и операции сравнения для набора бит, рассматривая его как двоичное представление целого числа без знака.

Решение

Программный код примера 11.36 содержит функции, которые позволяют выполнять арифметические операции и операции сравнения с шаблоном класса bitset из заголовочного файла <bitset>, рассматривая его как целый тип без знака.

Пример 11.36. bitset_arithmetic.hpp

#include <stdexcept>

#include <bitset>

bool fullAdder(bool b1, bool b2, bool& carry) {

 bool sum = (b1 ^ b2) ^ carry;

 carry = (b1 && b2) || (b1 && carry) || (b2 && carry);

 return sum;

}

bool fullSubtractor(bool b1, bool b2, bool& borrow) {

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату