том, что, начиная с 1944 года, уже выйдя на пенсию, Ипатьев неоднократно пытался вернуться на Родину, но неизменно получал отказ.
Несмотря на многие годы, проведенные в США, широкую известность и всеобщее признание, Ипатьев так и не прижился в этой стране и чувствовал себя в ней чужим. Благодаря своим патентам он мог считаться богатым человеком даже по американским меркам, но жил очень скромно, снимая с женой номер в отеле. Ни автомобиля, ни коттеджа, ни роз на клумбе. Все зарабатываемые им деньги он тратил на оснащение лаборатории, на научные исследования, которыми занимался до последних дней своей жизни.
Эта страсть к веществу, к работе руками – одна из самых поразительных черт Ипатьева. Нынешним академикам такое и в голову не придет. А вот Ипатьев работал руками всегда, невзирая на условия, мало подходящие для этих занятий, – в армейском гарнизоне, во время войны и революции, на пенсии. Он так и умер, работая, в возрасте 85 лет.
Завершим жизнеописание Ипатьева тем, с чего начали – рассказом о его семье. Женился Ипатьев сразу после окончания академии в 1892 году, на своей старинной московской приятельнице Варваре Дмитриевне Ермаковой и прожил с ней до конца своих дней, хотя, по воспоминаниям современников, был отнюдь не схимником и часто увлекался женщинами – у него и на это доставало времени и сил!
В семье Ипатьевых было четверо детей – сыновья Дмитрий, Николай и Владимир и дочь Анна. Дмитрий погиб на германском фронте в 1916 году. Николай, также бывший офицером, после революции примкнул к Белому движению и навсегда порвал с отцом, которого считал ренегатом. Впоследствии он погиб в Африке при испытании изобретенного им средства против желтой лихорадки. Владимир пошел по стопам отца и работал в созданной им лаборатории высоких давлений. В 1936 году его, по обычаю того людоедского времени, заставили выступить на упомянутом заседании Академии наук с осуждением поступка отца. Владимир осуждать не стал, ограничившись общими словами о том, что не знает всех обстоятельств дела, но в принципе не одобряет тех, кто покидает Родину. Его тогда даже не арестовали. Впрочем, свой срок Владимир Ипатьев-младший все же получил, в 1941 году. Но срок был по тем временам символический – пять лет, его давали тогда “ни за что”. И отбывал его Владимир на “шарашке” в Москве. Впоследствии он стал профессором Ленинградского университета, потом – Лесотехнической академии, а в 1955 году скоропостижно скончался, пережив отца всего на три года. Дочь Анна тоже осталась в России и тоже хлебнула лиха после обструкции отца. В сущности, Ипатьевы потеряли детей и, живя в Америке, тяжело переживали это. Чтобы скрасить одиночество и утолить хоть как-то тоску по детям, они удочерили и воспитали двух русских девочек-сирот. Варвара Дмитриевна пережила мужа лишь на несколько месяцев…За время жизни Ипатьева и в значительной мере благодаря его работам катализ претерпел разительные перемены. Если в конце XIX века катализаторы были предметом сугубо академических исследований с туманными перспективами их применения в промышленности, то в середине века XX, наоборот, уже невозможно было представить химическую промышленность без использования катализа. В настоящее время каталитические процессы обеспечивают более 80 % продукции химических отраслей и около 20 % ВВП развитых стран. Вы только вдумайтесь в последнее число: ведь это больше, чем вклад электроники, автомобилестроения, строительства, любой другой отрасли материального производства!
Какое отношение это имеет к нанотехнологиям? Самое непосредственное! После прочтения главы о Ловице и сорбентах вы можете сами легко воссоздать эту прямую логическую связь. Упомянутые выше катализаторы, металлы и окислы металлов, представляют собой твердые вещества. Понятно, что превращения различных соединений происходят на их
Об одном из таких веществ я уже рассказывал. Это – цеолиты с их поразительной по красоте структурой, состоящей из многогранных полостей размером чуть более нанометра, соединенных столь же геометрически правильными “окнами”, удивительный продукт природных нанотехнологий, расшифрованный, скопированный и усовершенствованный учеными. В настоящее время цеолиты используют, например, для получения высокооктанового бензина, для осуществления множества других реакций нефтехимического синтеза, для обессеривания нефтяных фракций, на их основе создают катализаторы дожигания отходящих газов автомобильных двигателей и т. д. Суммарная стоимость химической продукции и моторного топлива, производимых ежегодно с использованием цеолитов, давно превысила 1 триллион долларов. К слову сказать, именно в такую сумму оценивают перспективный рынок продукции всех нанотехнологий. Даже интересно, как при этих расчетах оценивали вклад цеолитных катализаторов? Или о них просто забыли?
Структура многих других катализаторов, в частности окиси алюминия, введенной в практику катализа Ипатьевым, не столь совершенна, как у цеолитов, но общий принцип сохраняется: все они обладают развитой поверхностью и разветвленной системой пор нанометровых размеров.
Но приставка нано “возникает” в катализе не только благодаря порам. Еще один важнейший класс промышленных катализаторов – так называемые нанесенные металлические катализаторы, в которых металл пребывает в виде наночастиц. Об этом стоит рассказать подробнее, потому что этот пример прекрасно иллюстрирует, каким извилистым путем меняются представления и предпочтения в науке и технологии.
Пальму первенства в открытии каталитических свойств металлов традиционно отдают немецкому химику Иоганну Вольфгангу Дёберейнеру (1780–1848), который в 1821 году получил уксусную кислоту окислением этилового спирта в присутствии платины. Сбраживание вина в уксус – классический пример
Еще через два года Дёберейнер обнаружил явление воспламенения струи водорода, направленной на так называемую губчатую платину, которая выступала в качестве катализатора окисления водорода кислородом воздуха с образованием воды. Реакция эта протекает с выделением большого количества тепла, за счет которого и происходит воспламенение водорода. Открытие немедленно нашло практическое воплощение в “водородном огниве” – устройстве, применявшемся для получения огня до изобретения спичек.
Впрочем, это было едва ли не единственным практическим приложением металлических катализаторов на протяжении нескольких десятилетий. В науке же шло постепенное накопление данных о свойствах и природе каталитического действия металлических катализаторов. Следующий прорыв в этой области связан с именем Поля Сабатье, который в первые годы XX века стал использовать в качестве катализаторов мелкораздробленные металлы. Возможно, после прочтения предыдущих глав книги эта идея представляется вам тривиальной – Сабатье за счет измельчения металла просто увеличил его поверхность и, следовательно, активность. К слову сказать, и Дёберейнер в своем огниве использовал губчатую платину, удельная поверхность которой в десятки раз больше, чем у платиновой проволоки.
Но работать с мелкими частицами чрезвычайно неудобно, их безвозвратно уносит поток газа. Если же реакцию проводить в жидкости, то потом намучаешься с осаждением тонкой устойчивой взвеси.
В лаборатории это еще проходит, но для промышленности никак не годится. Сабатье нашел изящный и универсальный способ преодоления этих трудностей – наносить металлы на поверхность других твердых веществ, которые стали, естественно, называть носителями или подложками. Палладий на угле – самый известный из предложенных Сабатье катализаторов, используемый, кстати, до сих пор.
Он же предложил и общий способ получения таких катализаторов. Зачем механически измельчать металл, если его можно просто растворить в кислоте, затем осадить соль на поверхность носителя и восстановить назад до металла. На стадии связывания соли металла носитель играет роль сорбента. Если эта роль ему не очень удается, то можно воспользоваться вечным армейским принципом “не умеет – научим, не хочет – заставим” и просто выпарить раствор соли металла над носителем.
Этот подход оказался хорош еще и тем, что позволял получать частицы металла размером в несколько нанометров, которые в принципе невозможно получить с помощью механического измельчения. Маленький размер, огромная поверхность – производительность катализаторов сразу выросла на порядки, что открыло им дорогу в промышленность.
То, что нанесенные частицы металла, получаемые этим способом, имеют размер в единицы и десятки нанометров, ученые установили много десятилетий назад. Они научились также получать частицы нужного размера в зависимости от поставленной задачи. Понятно, что для нанесения максимально возможного количества этих частиц исследователи использовали носители с высокой величиной поверхности, так что создаваемые ими катализаторы характеризовались сразу двумя величинами в диапазоне нано: размерами частиц металла и диаметром пор носителя.
Вопрос о том, как образуются эти частицы на поверхности, также не ставил исследователей в тупик, ведь в их распоряжении были прецеденты по получению золей