коррелограмме исходных уровней временного ряда USDollar (см. табл. 3.1), значимость Q-статистики для всех 36 лагов равна нулю, поэтому нулевая гипотеза об отсутствии автокорреляции в остатках отклоняется для всех лагов.
3.4. Решение в Excel уравнения авторегрессии 2-го порядка AR(2)
После того как с помощью соответствующей коррелограммы (см. табл. 3.1) мы пришли к выводу, что для получения оптимального прогноза по курсу доллара следует построить модель авторегрессии 2-го порядка AR(2), следующим нашим шагом должно стать нахождение ее параметров. Правда, для этого развернутое уравнение авторегрессии AR(2), представленное в формуле (3.10), необходимо немного упростить. С этой целью из формулы следует убрать остатки, которые появятся только после решения этого уравнения. Кроме того, чтобы убрать у коэффициентов факторных переменных подстрочные индексы (цифры), обозначим их различными буквами. В результате формула (3.10) приобретет более удобный для решения вид:
Мы уже научились решать уравнения регрессии в Excel (см. алгоритм действий № 3 «Как решить уравнение регрессии в Excel»), поэтому, используя этот алгоритм, можно получить соответствующее уравнение авторегрессии, которое, как известно, является частным случаем уравнения регрессии и отличается от последнего лишь наличием лаговых факторных переменных. А для загрузки и первичной обработки данных по ежемесячному курсу доллара необходимо воспользоваться алгоритмом действий № 1 «Как строить диаграммы в Microsoft Excel» — Шаг 1 «Поиск данных, их загрузка и первичная обработка в Excel».
Далее создадим в Excel три столбца: во-первых, с зависимой переменной USDollar — ежемесячный курс доллара США; во-вторых, с двумя независимыми переменными USDollar(-l) — курс доллара США с лагом в один месяц и USDollar(-2) — курс доллара США с лагом в два месяца. При этом загруженная база данных по американской валюте охватывает период с июня 1992 г. по апрель 2010 г.
Далее, согласно алгоритму действий № 3 «Как решить уравнение регрессии в Excel», установим в появившемся окне РЕГРЕССИЯ следующие опции (рис. 3.2): ВХОДНОЙ ИНТЕРВАЛ Y ($В$1:$В$214); ВХОДНОЙ ИНТЕРВАЛ X ($C$1:$D$214); УРОВЕНЬ НАДЕЖНОСТИ (99); ВЫХОДНОЙ ИНТЕРВАЛ ($L$2).
В результате решения в Excel уравнения авторегрессии AR(2) со свободным членом мы получим следующий ВЫВОД ИТОГОВ, представленный в виде табл. 3.2. Возьмем из этой таблицы значения коэффициентов (см. столбец «Коэффициенты») и, подставив их в формулу (3.13), получим следующее уравнение авторегрессии (с округлением):
USDollar = 0,2260 + 1,2980 USDollar(-l) — 0,3047 USDollar(-2),
где USDollar — зависимая переменная, курс доллара США;
USDollar(-l) — независимая переменная, курс доллара США с лагом в один месяц;
USDollar(-2) — независимая переменная, курс доллара США с лагом в два месяца;
0,2260 — свободный член (константа).
При этом экономическая интерпретация этого уравнения авторегрессии 2-го порядка следующая: во-первых, в период с июня 1992 г. по апрель 2010 г. при исходном уровне 0,2260 руб. рост на 1 руб. курса доллара в текущем месяце приводил к повышению прогнозируемого курса доллара в будущем месяце в среднем на 1,2980 руб.; во-вторых, одновременно с этим рост курса доллара в прошлом месяце приводил к снижению прогнозируемого курса доллара в будущем месяце в среднем на 0,3047 руб.
Действуя согласно алгоритму действий № 4 «Оценка статистической значимости уравнения регрессии и его коэффициентов», мы можем сделать следующие выводы.
1. Поскольку коэффициент детерминации
2. Значимость
3.
3.5. Решение в EViews уравнения авторегрессии 2-го порядка AR(2)
Уравнение авторегрессии 2-го порядка с константой можно решить не только в Excel, но и в EViews. Более того, решение этого уравнения регрессии в EViews имеет ряд преимуществ, обусловленных спецификой этой программы. Во-первых, в EViews можно быстрее оценить прогностическую точность полученной статистической модели; во-вторых, есть возможность протестировать полученные остатки на стационарность, наличие автокорреляции, а также провести ряд других важных тестов, о которых мы расскажем позднее. Тем читателям, которым еще не приходилось решать уравнения регрессии в EViews, советуем внимательно ознакомиться с алгоритмом действий № 6 «Как решить уравнение регрессии в EViews».
Для импорта ежемесячных данных по курсу доллара (на конец месяца) за период с июня 1992 г. по апрель 2010 г. из Excel в EViews необходимо воспользоваться алгоритмом действий № 2 «Импорт данных и создание рабочего файла в EViews». При этом столбец с соответствующими данными по курсу доллара мы обозначили как USDollar.
После импорта данных в Excel выбираем в командной строке EViews опции OBJECT/NEW OBJECT, а затем в появившемся окне (NEW OBJECT (НОВЫЙ ОБЪЕКТ) выбираем опцию EQUATION (УРАВНЕНИЕ) — рис. 3.3).
Далее в EViews появляется новое окно — EQUATION ESTIMATION (ОЦЕНКА УРАВНЕНИЯ), которое мы должны заполнить, как показано на рис. 3.4.
Следует иметь в виду, что в опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) в мини-окне METHOD (МЕТОД РЕШЕНИЯ) по умолчанию появляется опция LS — LEAST SQUARES (NIC AND ARMA), название которой переводится как МЕТОД НАИМЕНЬШИХ КВАДРАТОВ (НЕЛИНЕЙНЫЙ МНК И ARM А). Поскольку это уравнение авторегрессии мы решаем с помощью метода наименьших квадратов, то эту опцию мы оставляем. Хотя при необходимости в EViews можно использовать несколько других методов решения уравнений, на которых мы сейчас не будем останавливаться.
В опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) есть еще одно мини-окно — SAMPLE (ВЫБОРКА), в котором по умолчанию указывается либо общее количество наблюдений, либо период наблюдения. В данном случае в мини-окне SAMPLE появилась надпись: 1992М06 2010М05, что означает, что наша выборка содержит ежемесячные данные за период с июня 1992 г. по май 2010 г.