основного используется критерий
В том случае, когда значимость (
В EViews приводится в качестве дополнительного
Как мы уже убедились ранее, при построении уравнения авторегрессии у нас происходит уменьшение временного ряда данных, что ведет к пропуску в том числе и части лаговых остатков. Согласно предложению, выдвинутому в 1993 г. Давидсоном и Маккинном, в этом случае отсутствующие остатки следует приравнивать к нулю. По их мнению, это дает лучшую статистику, чем в случае пропуска этих остатков. Однако, по мнению большинства исследователей, в этом случае распределение
3.7. Оценка точности решения уравнения авторегрессии в EViews
Важным критерием оценки эффективности статистической модели является уровень точности, получаемый с помощью определенной статистической модели при прогнозе курса доллара. Его в EViews можно оценить с помощью алгоритма действий № 8.
Чтобы оценить точность статистической модели, нужно в строке 3 EQUATION (уравнение) выбрать опцию FORECAST.
В результате откроется мини-окно FORECAST, которое следует заполнить таким образом (рис. 3.6).
По умолчанию в опции FORECAST NAME (название файла с прогнозом) задается название файла с точечным прогнозом путем прибавления к исходному файлу латинской буквы
В опции OUTPUT (вывод итогов) мы задали вариант FORECAST EVALUATION (оценка прогноза) и получили таблицу с оценкой точности прогноза этой статистической модели (см. табл. 3.6). При необходимости в последней опции можно задать еще и вариант FORECAST GRAPH (график прогнозов), после чего можно получить и график с прогнозами.
Чтобы по табл. 3.6 вынести суждение о качестве статистической модели, сначала нужно ознакомиться с табл. 3.5. Причем в первую очередь следует обратить внимание на раздел этой таблицы «Идеальное значение параметра». Из него можно сделать вывод: чем ближе стремятся к нулю параметры, представленные в табл. 3.6, тем выше прогностическая ценность статистической модели. Единственным исключением из этого правила является параметр Covariance Proportion (доля ковариации, т. е. доля несистематической ошибки), для которого идеальным значением является единица.
В алгоритме действий № 8 «Как оценить точность статистической модели в EViews» в самом общем виде уже говорилось об интерпретации параметров, характеризующих уровень точности статистической модели. Однако далее все желающие могут более подробно ознакомиться со спецификой параметров, содержащихся в табл. 3.6. «Оценка точности уравнения регрессии (статистической модели) с параметрами USDollar = 0,2260 + 1,2980 USDollar(-l) — 0,3047 USDollar(-2)».
В частности,
где
На основе имевшихся у нас данных квадратный корень средней ошибки предсказания по курсу доллара имеет следующее значение:
При этом следует иметь в виду, что величина квадратного корня средней ошибки предсказания всегда чуть больше стандартной ошибки, представленной, например, в «Выводе итогов в Excel для уравнения авторегрессии 2-го порядка AR(2)» (см. табл. 3.2). Это объясняется тем, что квадратный корень средней ошибки предсказания находится путем деления суммы квадратов остатков на общее количество наблюдений. В то время как стандартная ошибка находится путем деления суммы квадратов остатков на число степеней свободы. Так, в нашем случае квадратный корень средней ошибки предсказания равен 0,805567 (при общем числе наблюдений, равном 213), а стандартная ошибка равна 0,811301 (при 210 степенях свободы). Причем число степеней свободы для нашей статистической модели находят следующим образом: