Zt= 0 свободный член уравнения а1 = а, а коэффициент регрессии — с1? t= с ? t. Таким образом, параметр b можно рассматривать как разницу между а1 и а2, т. е. между свободными членами уравнений (5.10.1) и (5.10.2). В свою очередь параметр d следует рассматривать как разницу между c1 и с2, т. е. между коэффициентами регрессии уравнений (5.10.1) и (5.10.2). Следовательно, параметр b оценивает структурный сдвиг, а параметр d — структурное изменение наклона в уравнении регрессии, произошедшее в момент времени t'. Оценку параметров bud можно провести, решив уравнение регрессии, а затем оценив их значимость при помощи t-критерия Стьюдента.

Подробности по этой теме можно узнать, ознакомившись с соответствующей литературой[17].

Таким образом, с помощью метода, предложенного американским экономистом Д. Гуйарати, нам удалось выяснить, что во временном ряде по ежемесячному курсу доллара, охватывающем период с июня 1992 г. по апрель 2010 г., после августовского дефолта 1998 г. произошли следующие структурные изменения: во-первых, в августе 1998 г. произошел структурный сдвиг; во-вторых, в сентябре 1998 г. имело место первое структурное изменение наклона (изменился коэффициент регрессии факторной переменной с лагом в два месяца); в-третьих, в октябре 1998 г. имело место второе структурное изменение наклона (изменился коэффициент факторной переменной с лагом один месяц).

5.7. Построение статистической модели с оптимальным диапазоном интервального прогноза

А теперь посмотрим, подтвердит ли эти структурные изменения во временном ряде тест Чоу на точность прогноза. С этой целью проведем тестирование модели USDOLLAR = а ? USDOLLAR(-l) + b ? USDOLLAR(-2), построенной на основе данных за период с июня 1992 г. по апрель 2010 г. При этом проверять на наличие структурной стабильности будем такие месяцы, как июль — декабрь 1998 г. и январь 1999 г., поскольку тест Д. Гуйарати показал наличие структурных изменений в августе — октябре 1998 г., но для большей надежности мы решили несколько расширить этот временной диапазон.

В результате получилась табл. 5.16, согласно которой уровень значимости F-критерия и LR-статистики для июля — октября 1998 г. оказался равен нулю, что опровергает нулевую гипотезу о структурной стабильности временного ряда относительно тестируемых наблюдений. Кстати, на основе этого теста аналогичный вывод можно сделать и для всех наблюдений с августа 1992 г. по октябрь 1998 г. включительно; в то время как уровень значимости F-критерия и LR-статистики по итогам проведения теста Чоу на точность прогноза относительно ноября 1998 г. и остальных, более поздних наблюдений (за исключением января — февраля 2009 г., но этот факт мы рассматриваем как временное явление) будет выше 0,05. Отсюда можно сделать вывод, что нулевая гипотеза о наличии структурной стабильности в этой части временного ряда подтверждается, что совпадает с аналогичными результатами, полученными с помощью метода Д. Гуйарати.

Чтобы построить статистическую модель с приемлемым диапазоном интервального прогноза, попробуем — с учетом итогов теста Чоу на точность прогноза — исключить из расчетной базы данных период с июля 1992 г. по октябрь 1998 г. (включительно). После чего на основе рыночных данных с ноября 1998 г. по апрель 2010 г. с помощью модели USDOLLAR = а ? USDOLLAR(-l) + b ? USDOLLAR(-2) построим новое уравнение регрессии, вывод итогов которого представлен в табл. 5.17. Как нетрудно заметить, все переменные, включенные в это уравнение регрессии, оказались статистически значимыми (Prob. = 0). Далее эту модель будем называть нестационарной моделью с оптимизированным временным рядом, чтобы отличить ее от модели с полным временным рядом.

В результате точечный прогноз по курсу доллара на май 2010 г. оказался равен 29,287 руб. Таким образом, последняя цифра лишь немного отклонилась от 29,3137 руб., т. е. от точечного прогноза на май 2010 г., составленного по статистической модели с полным временным рядом (на основе данных с июня 1992 г. по апрель 2010 г.).

Далее составим точечные и интервальные прогнозы как для всех предыдущих наблюдений, включенных в базу данных, начиная с ноября 1998 г., так и на май 2010 г. (это наблюдение в базу данных не вошло). При этом будем пользоваться алгоритмом действий № 11 «Как в EViews построить точечный прогноз» и алгоритмом действий № 12 «Как в EViews построить интервальные прогнозы».

В результате появилась возможность сопоставить заданные уровни надежности с фактической долей точных интервальных прогнозов. После проведения соответствующих подсчетов получилась табл. 5.18. Судя по этой таблице, доля точных прогнозов у предложенной модели оказалась незначительно ниже заданного уровня при 99,9 %-ном и 99 %-ном уровнях надежности. В то время как при 95 %-ном уровне надежности и ниже доля точных интервальных прогнозов становится на 0,7 процентного пункта выше заданного уровня. По мере снижения заданного уровня надежности эта положительная разница растет, достигая максимума при 40 %-ном уровне надежности, когда она равна 31,2 процентного пункта.

Сравнив табл. 5.18 и табл. 4.8, можно сделать следующие выводы. Во-первых, фактическая точность интервальных прогнозов, составленных по нестационарной модели с оптимизированным временным рядом, как и точность интервальных прогнозов, составленных по аналогичной модели с полным временным рядом, при 95 %-ном уровне надежности оказалась выше заданного уровня. Во-вторых, фактическая точность интервальных прогнозов, рассчитанных по модели с полным временным рядом, в среднем немного выше, чем у модели с оптимизированным временным рядом, хотя при 95 %-ном уровне надежности эта разница и незначительна.

Однако последняя модель опережает первую по таким важным параметрам, как средний диапазон интервального прогноза (в рублях); средний диапазон интервального прогноза (в процентах от среднего фактического курса); и индекс оптимальности интервальных прогнозов (см. табл. 6.24).

Стоит также отметить, что благодаря оптимизации временного ряда нам удалось получить временной ряд с приемлемым диапазоном интервального прогноза. В этом можно убедиться, если познакомиться с табл. 5.19, в которой в целях экономии места помещена лишь часть интервальных прогнозов.

Так, в ноябре 1998 г. общий диапазон интервального прогноза (верхняя граница интервального прогноза минус нижняя граница интервального прогноза) при 95 %-ном уровне надежности составил 2 руб. 86,53 коп. при фактическом курсе доллара, равном 17 руб. 88 коп. В свою очередь при прогнозе на май 2010 г. общий диапазон интервального прогноза был равен 2 руб. 88,07 коп., а фактический курс доллара составил 30 руб. 49,56 коп. Следовательно, в ноябре 1998 г. общий диапазон интервального прогноза составлял 16,03 % от фактической стоимости доллара, в то время как в мае 2010 г. эта цифра равнялась 9,42 %.

Нетрудно также заметить, что за счет уменьшения стандартного отклонения (в структурно стабильном временном ряде, естественно, наблюдается более низкий уровень волатильности) ширина диапазона интервального прогноза в табл. 5.19 оказалась несколько меньше, чем в табл. 4.9.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату