нами цен покупки и продажи в ходе торгов на валютном рынке с 20 июля по 27 июля 2010 г.

Поскольку 20 июля курс доллара значительно вырос (рис. 7.7), то первым в торгах смог участвовать инвестор, установивший цену продажи доллара с 60 %-ным уровнем надежности. Однако затем американская валюта стала преимущественно падать, поэтому на рынок смог выйти игрок, планировавший купить доллар по цене с 60 %-ным уровнем надежности.

В таблице 7.19 представлены итоги валютных торгов за период с 20 июля по 27 июля 2010 г. для инвесторов, установивших цены покупки или продажи доллара с разными уровнями надежности. Судя по этой таблице, положительную курсовую доходность в размере 0,37 % по итогам недельного инвестиционного периода получил инвестор, установивший цену продажи доллара с 60 %-ным уровнем надежности, в то время как инвестор, установивший цену покупки доллара с 60 %-ным уровнем надежности, еще не успел заработать на своей покупке, поскольку приобрел валюту в последний день инвестиционного периода. В свою очередь инвестор, придерживавшийся стратегии «купил и держи», понес убытки в размере 0,53 %. Заметим, что фактическая вероятность удачной сделки для инвестора, придерживавшегося этой стратегии, по нашим подсчетам, за период с 1 октября 1998 г. по 20 июля 2010 г. составила 48,5 % (из 612 сделок 297 были удачными, если вести подсчет доходности на конец каждого инвестиционного периода).

7.4. Использование в торговле модели для прогнозирования курса евро к доллару с упреждением в один день

До сих пор мы делали прогнозы относительно курса доллара к рублю. А теперь попробуем оценить, насколько эффективно будет использование в торгах статистической модели, по которой можно делать прогноз по курсу евро к доллару с упреждением в один день. На основе базы данных по курсу евро к доллару, взятых с интервалом в один день (цена закрытия) с 5 января 1999 г. по 13 сентября 2010 г., нами была построена прогностическая модель, по которой можно делать прогнозы с упреждением в один день. Поскольку ARM А-структура статистической модели, полученная по исходному временному ряду, оказалась нестационарной, мы решили построить ее на основе логарифмического временнoго ряда. Данные по итогам решения уравнения регрессии, полученного из логарифмированного временнoго ряда, можно увидеть в табл. 7.20. Поскольку коэффициент а получился меньше единицы (хотя эта разница и незначительна), то можно говорить о стационарной ARMA-структуре этой модели.

Подставив в log(EURUSD) = а ? log(EURUSD(-l)) коэффициенты из табл. 7.20, получим следующую формулу:

log(EURUSD) = 0,9996 ? log(EURUSD(-l)), (7.5)

где EURUSD, EURUSD(-l) — переменные, обозначающие текущий курс евро к доллару и курс евро к доллару с лагом в один день.

Однако интерпретация формулы (7.5) не столь очевидна, поскольку она относится к логарифмическому ряду. Поэтому с помощью потенцирования этой формулы можно перейти от логарифмов к исходному временному ряду, как мы это уже делали при преобразовании формулы (6.5) в формулу (6.6). В результате исходная линейная функция (7.5), решенная относительно логарифмического временнoго ряда, станет степенной функцией, которую можно применять относительно исходного временнoго ряда:

EURUSD = EURUSD(-1)^0,9996. (7.6)

При этом интерпретация формулы (7.6) будет следующей: в период с 5 января 1999 г. по 13 сентября 2010 г. рост на 1 % курса евро к доллару в предыдущем торговом дне в среднем способствовал повышению курса евро к доллару в следующем торговом дне на 0,9996 %.

Далее оценим точность полученной статистической модели (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»), поместив результаты этой оценки в табл. 7.21. Судя по этой таблице, среднее отклонение по модулю курса евро к доллару от его прогноза за весь период составило лишь 0,58 цента, а среднее отклонение по модулю в процентах равняется 0,50 %.

Теперь посмотрим, является ли стационарным логарифмический временной ряд, на основе которого построена наша статистическая модель. С этой целью проведем тестирование логарифмического временного ряда с помощью расширенного теста Дикки — Фуллера (табл. 7.22). При этом уровень значимости (Prob.*) одностороннего t-критерия получился равным 0,2908, а потому нулевая гипотеза о нестационарности логарифмического временного ряда не отвергается.

Таким образом, мы получили статистическую модель со стационарной ARMA-структурой, построенной на основе нестационарного логарифмического временнoго ряда. Посмотрим, получим ли мы в результате стационарные остатки, что весьма важно для получения надежных прогнозов. С этой целью проведем с помощью расширенного теста Дикки — Фуллера тестирование остатков, полученных после решения уравнения регрессии log(EURUSD) = а ? log(EURUSD(-l)). Судя по табл. 7.23, можно сделать вывод, что мы получили стационарные остатки, поскольку уровень значимости теста (Prob.) оказался равен нулю.

Для проверки качества модели log(EURUSD) = а ? log(EURUSD(-l)) посмотрим, во-первых, как изменяется с увеличением лага автокорреляция и частная автокорреляция в остатках, во-вторых, насколько соответствуют фактические значения коррелограммы остатков их теоретическим значениям. Судя по рис. 7.8, по мере роста величины лага уровень автокорреляции постепенно снижается, асимптотически стремясь к нулю, а частная автокорреляция падает почти до нуля, начиная со 2-го лага. Правда, при этом фактический уровень автокорреляции (нижние вертикальные линии) падает гораздо быстрее его теоретических значений (верхняя пологая точечная линия). Что же касается динамики фактического уровня частной автокорреляции (вертикальные линии), то она практически совпадает с его теоретическими значениями (верхняя точечная линия).

Тестирование на импульсный ответ ARMA-структуры модели log(EURUSD) = а ? log(EURUSD(-l)) хотя и показало ее стационарность, однако вместе с тем выявило тот факт, что для достижения стабильности модели требуется весьма длительное тестовое время. Как хорошо видно из рис. 7.9, величина импульсного ответа и величина накопленного импульсного ответа по мере увеличения периодов тестирования на внешние шоки (инновационную неопределенность) асимптотически стремятся: первая — к нулю, а вторая — к определенному пределу. Однако, чтобы показать на рисунке обе эти тенденции, мы были вынуждены увеличить время тестирования до 5000 периодов.

Убедившись, что статистическая модель log(EURUSD) = а ? log(EURUSD(-l)) в целом адекватна, составим с ее помощью прогноз с упреждением в один день на 14 сентября 2010 г. При этом используются данные курса евро к доллару, взятые с интервалом в один день (цена закрытия) с 5 января 1999 г. по 13 сентября 2010 г. Согласно полученному точечному прогнозу, курс евро на 14 сентября 2010 г. должен был равняться 1,2800 дол., хотя в действительности единая европейская валюта в этот день стоила 1,2850 дол., т. е. ее курс отклонился на 0,5 цента. Таким образом, прогноз курса евро к доллару оказался точным при интервальном прогнозе, составленном с 50 %-ным уровнем надежности.

Полученная в результате составления прогноза средняя ошибка индивидуального прогнозного

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату