нами цен покупки и продажи в ходе торгов на валютном рынке с 20 июля по 27 июля 2010 г.
Поскольку 20 июля курс доллара значительно вырос (рис. 7.7), то первым в торгах смог участвовать инвестор, установивший цену продажи доллара с 60 %-ным уровнем надежности. Однако затем американская валюта стала преимущественно падать, поэтому на рынок смог выйти игрок, планировавший купить доллар по цене с 60 %-ным уровнем надежности.
В таблице 7.19 представлены итоги валютных торгов за период с 20 июля по 27 июля 2010 г. для инвесторов, установивших цены покупки или продажи доллара с разными уровнями надежности. Судя по этой таблице, положительную курсовую доходность в размере 0,37 % по итогам недельного инвестиционного периода получил инвестор, установивший цену продажи доллара с 60 %-ным уровнем надежности, в то время как инвестор, установивший цену покупки доллара с 60 %-ным уровнем надежности, еще не успел заработать на своей покупке, поскольку приобрел валюту в последний день инвестиционного периода. В свою очередь инвестор, придерживавшийся стратегии «купил и держи», понес убытки в размере 0,53 %. Заметим, что фактическая вероятность удачной сделки для инвестора, придерживавшегося этой стратегии, по нашим подсчетам, за период с 1 октября 1998 г. по 20 июля 2010 г. составила 48,5 % (из 612 сделок 297 были удачными, если вести подсчет доходности на конец каждого инвестиционного периода).
7.4. Использование в торговле модели для прогнозирования курса евро к доллару с упреждением в один день
До сих пор мы делали прогнозы относительно курса доллара к рублю. А теперь попробуем оценить, насколько эффективно будет использование в торгах статистической модели, по которой можно делать прогноз по курсу евро к доллару с упреждением в один день. На основе базы данных по курсу евро к доллару, взятых с интервалом в один день (цена закрытия) с 5 января 1999 г. по 13 сентября 2010 г., нами была построена прогностическая модель, по которой можно делать прогнозы с упреждением в один день. Поскольку ARM А-структура статистической модели, полученная по исходному временному ряду, оказалась нестационарной, мы решили построить ее на основе логарифмического временн
Подставив в log(EURUSD) =
log(EURUSD) = 0,9996 ? log(EURUSD(-l)), (7.5)
где EURUSD, EURUSD(-l) — переменные, обозначающие текущий курс евро к доллару и курс евро к доллару с лагом в один день.
Однако интерпретация формулы (7.5) не столь очевидна, поскольку она относится к логарифмическому ряду. Поэтому с помощью потенцирования этой формулы можно перейти от логарифмов к исходному временному ряду, как мы это уже делали при преобразовании формулы (6.5) в формулу (6.6). В результате исходная линейная функция (7.5), решенная относительно логарифмического временн
EURUSD = EURUSD(-1)^0,9996. (7.6)
При этом интерпретация формулы (7.6) будет следующей: в период с 5 января 1999 г. по 13 сентября 2010 г. рост на 1 % курса евро к доллару в предыдущем торговом дне в среднем способствовал повышению курса евро к доллару в следующем торговом дне на 0,9996 %.
Далее оценим точность полученной статистической модели (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»), поместив результаты этой оценки в табл. 7.21. Судя по этой таблице, среднее отклонение по модулю курса евро к доллару от его прогноза за весь период составило лишь 0,58 цента, а среднее отклонение по модулю в процентах равняется 0,50 %.
Теперь посмотрим, является ли стационарным логарифмический временной ряд, на основе которого построена наша статистическая модель. С этой целью проведем тестирование логарифмического временного ряда с помощью расширенного теста Дикки — Фуллера (табл. 7.22). При этом уровень значимости
Таким образом, мы получили статистическую модель со стационарной ARMA-структурой, построенной на основе нестационарного логарифмического временн
Для проверки качества модели log(EURUSD)
Тестирование на импульсный ответ ARMA-структуры модели log(EURUSD) =
Убедившись, что статистическая модель log(EURUSD) =
Полученная в результате составления прогноза средняя ошибка индивидуального прогнозного