системы на сотни или тысячи лет — чем не внеземные цивилизации? Социальная и даже биологическая эволюция, прошедшая за такие сроки своим неземным путем, — разве не даст она интереснейшую основу для Контакта? Пусть мощность корабля будет порядка 1013–1014 Вт, то есть планетарных, а не звездных масштабов, но ведь мы и пытаемся отыскать населенную планету…

У нас еще будет повод вернуться к этой идее, а пока посмотрим, к чему ведут проекты других методов Контакта.

Как это сделать — сигнальный Контакт

Конкретные идеи сигнального Контакта как основной альтернативы Контакту транспортному выдвигались довольно давно. Примерно тогда же, когда жюльверновские герои выстреливались из пушки на Луну, возникли вполне серьезные проекты передачи оптических сигналов на ближайшие планеты. Это были впечатляющие предложения — от вырубки гигантского прямоугольного треугольника в сибирской тайге до разжигания апокалипсического костра в Сахаре. Здесь есть повод для восхищения теми жертвами, которые часть человечества стремилась принести во имя связи с братьями по разуму, но, несомненно, мы радуемся, что жертвоприношение не состоялось — оно заметно усилило бы проявления нынешнего экологического кризиса.

Сигнальный метод имеет один принципиальный недостаток по сравнению с транспортным — приходится заведомо ограничивать круг возможных открытий наивысшим эволюционным уровнем, достигнутым на Земле. Одинаково бесполезно обстреливать радиоимпульсами планету, где процветают прокариоты, динозавры или государства в духе империи инков. Те же самые солнечные зайчики, посылаемые на Луну и на Марс с помощью гигантских зеркал в соответствие с одним из проектов 19 века, хороши лишь в сильном предположении, что селениты или марсиане изобрели очень приличные оптические телескопы.

Но есть в этом методе и явные преимущества — сигнальная связь экономит время и средства. Самая быстрая транспортная связь в масштабах Земли практически ограничена скоростями порядка скорости звука, сигнальная же — в миллион раз быстрее. Вероятно, лучшее, чего мы сумеем добиться в транспортных средствах внутри Солнечной системы, — миллисветовые ракеты, но сигнальная связь все-таки в тысячу раз быстрее. Ну и конечно, самое важное, что сигналы проходят там, где по техническим или вполне принципиальным причинам нельзя использовать никакие транспортные средства. Все, что мы знаем о недрах Земли и глубинах Вселенной, основано на обработке сигнальной информации. Если бы ввиду какого-то грандиозного природного катаклизма Атлантический и Тихий океаны не стали бы временно пропускать корабли и самолеты, обе Америки могли бы поддерживать оживленный контакт с другими континентами с помощью радиопередатчиков.

Если же «межзвездный океан» действительно не пропускает ультрарелятивистские корабли, то сигнальный Контакт остается вроде бы единственной надеждой на связь с далекими мирами. Это хорошая аналогия, но в космическом варианте есть серьезное отличие от земного — Америка все-таки была открыта транспортным методом, и произойди океанский катаклизм в доколумбову эпоху, мы и сейчас могли бы считать отсутствие радиопередач признаком необитаемости западного полушария…

Есть одно обстоятельство, способное сразу же породить сильнейший пессимизм. Дело в том, что реальные средства для сигнального Контакта поразительно, пожалуй, даже подозрительно молоды. Первый радиоприемник А. С. Попова заработал в 1895 году. В 1931 году случайное открытие К. Янского дало нам первый радиосигнал из космического пространства, а первый специальный радиорефлектор был создан в США только в 1937 году. Разработка средств, позволяющих уверенно вести поиск чужих радиосигналов и в какой-то степени ставить вопрос о посылке своих, относится уже к 40-50-м годам. Фактически нечто близкое можно сказать и об оптическом диапазоне. Пассивные средства приема, телескопы, — приборы довольно старые, но проблему передачи дальних оптических сигналов удалось поставить только после изобретения лазеров в 60-е годы. Другие же диапазоны спектра Вселенной (? — лучевой, рентгеновский, нейтринный) — целиком заслуга последних десятилетий. К этому же периоду относится и развитие наших представлений об энергетике мощных источников излучения.

Так неужели мы надеемся выйти на связь с цивилизацией, чья эволюционная разбежка с нашими цивилизациями класса В не превосходит нескольких десятков лет? Более ранний партнер будет попросту неконтактен, а более развитый… не покажутся ли ему наши средства чем-то вроде сахарских костров или сибирских лесных треугольников?

В этом-то и проблема. При ширине эволюционного спектра земных цивилизаций во многие тысячелетия трудно надеяться на сколь-нибудь заметную распространенность внеземных цивилизаций с нашим уровнем понимания сигнальных Контактов. Так не стоит ли подождать сто, двести или тысячу лет и, посмотрев на развитие сигнальных методов в этот период, на более солидной основе обратиться к межзвездным Контактам?

Доля справедливости в таком подходе, бесспорно, есть, но беда в том, что ни сторонники ожидания, ни его противники не могут оценить эту долю. Идеей ожидания можно опрокинуть все современное обсуждение Контакта[169]. Молодость (в том числе и дальней сигнальной связи), как говорится, преходящий недостаток. Подчеркивать его не так уж и полезно, важнее использовать достоинства. Пусть цивилизации с известными нам средствами сигнального Контакта мало или вообще нет. Но все-таки интересно посмотреть, что они могли бы предложить нам и чем мы сумели бы ответить. Только на этой основе можно пытаться вести поиск в более широком эволюционном диапазоне.

Итак, попробуем подробнее выяснить возможности сигнального Контакта.

Начнем с простейшей модели передачи светового сигнала — хорошо сфокусированного луча от очень мощного источника.

Светимость источника (в Ваттах), который на расстоянии r виден как звездочка величины не меньшей m, должна удовлетворять неравенству:

L r 2,65(r2(см) ?).10-12-m/2,5 = 2,52(r2 (пс) ?).1025-m/2,5 = 2,37(r2(св.г.) ?).1024-m/2,5,

где для удобства дано три варианта введения расстояния — в сантиметрах, парсеках и световых годах, соответственно, и — телесный угол (? = ?2 , где ? — угловое расхождение пучка, выраженное в радианах).

В предельных на сегодня условиях фокусировки (? ~ 10-7 радиан или 0,02 угловых секунды) оказывается, что источник можно наблюдать с расстояния 10 тысяч парсек (порядка расстояния до центра Галактики) как звездочку 25 величины (предел Зеленчукского телескопа), если его мощность порядка 2,6.109 Вт. При этом размер пятна (d ~ r?) будет порядка 200 а.е., то есть превысит размеры известной планетной зоны Солнечной системы.

Разумеется, речь может идти не об обычных источниках света, а о мощных лазерах, чей пучок дополнительно фокусируется большим зеркалом (диаметром 5–6 м). На это впервые указали американские физики Р. Шварц и Ч. Таунс еще в 1961 году. Мощности указанной величины — тысячи мегаватт — отнюдь не фантастика[170]. Кроме того, необязательно сразу ставить вопрос о лучевом зондировании всей Галактики. Лазер с мощностью около 250 Ватт обнаружит себя как звездочка 25-ой величины даже на расстоянии 10 световых лет. Так что посылка лазерных сигналов к ближайшим звездам, скажем, в радиусе 100 световых лет представляется осуществимой задачей.

Другой вопрос — весьма серьезные технические проблемы, которые пришлось бы при этом решать. Во избежание атмосферных помех лазерный маяк пришлось бы монтировать на околоземной орбите. Этот сложнейший комплекс из лазера, зеркала, энергоустановки и ЭВМ, контролирующей всю работу станции, нуждался бы в очень продуманной защите. Следовало бы построить эффективную систему модулирования излучения. Но принципиально непреодолимых трудностей тут не видно. Усилиями международного сообщества данную проблему можно было бы решить еще в 20 веке. Эта работа принесла бы неизмеримо больше пользы, чем заброска в околоземное пространство лазерного оружия.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату